Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Photonics ; 11(3): 816-865, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38550347

RESUMEN

Metasurfaces have recently risen to prominence in optical research, providing unique functionalities that can be used for imaging, beam forming, holography, polarimetry, and many more, while keeping device dimensions small. Despite the fact that a vast range of basic metasurface designs has already been thoroughly studied in the literature, the number of metasurface-related papers is still growing at a rapid pace, as metasurface research is now spreading to adjacent fields, including computational imaging, augmented and virtual reality, automotive, display, biosensing, nonlinear, quantum and topological optics, optical computing, and more. At the same time, the ability of metasurfaces to perform optical functions in much more compact optical systems has triggered strong and constantly growing interest from various industries that greatly benefit from the availability of miniaturized, highly functional, and efficient optical components that can be integrated in optoelectronic systems at low cost. This creates a truly unique opportunity for the field of metasurfaces to make both a scientific and an industrial impact. The goal of this Roadmap is to mark this "golden age" of metasurface research and define future directions to encourage scientists and engineers to drive research and development in the field of metasurfaces toward both scientific excellence and broad industrial adoption.

2.
Nat Nanotechnol ; 19(3): 267-268, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38123703
3.
Adv Mater ; 34(15): e2106733, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35172033

RESUMEN

Since their experimental discovery in 2015, Weyl semimetals have generated a large amount of attention due their intriguing physical properties that arise from their linear electron dispersion relation and topological surface states. In particular, in the field of nonlinear (NL) optics and light harvesting, Weyl semimetals have shown outstanding performances and achieved record NL conversion coefficients. In this context, the first steps toward Weyl semimetal nanophotonics are performed here by thoroughly characterizing the linear and NL optical behavior of epitaxially grown niobium phosphide (NbP) thin films, covering the visible to the near-infrared regime of the electromagnetic spectrum. Despite the measured high linear absorption, third-harmonic generation studies demonstrate high conversion efficiencies up to 10-4 % that can be attributed to the topological electron states at the surface of the material. Furthermore, nondegenerate pump-probe measurements with sub-10 fs pulses reveal a maximum modulation depth of ≈1%, completely decaying within 100 fs and therefore suggesting the possibility of developing all-optical switching devices based on NbP. Altogether, this work reveals the promising NL optical properties of Weyl semimetal thin films, which outperform bulk crystals of the same material, laying the grounds for nanoscale applications, enabled by top-down nanostructuring, such as light-harvesting, on-chip frequency conversion, and all-optical processing.

4.
Nat Commun ; 11(1): 5483, 2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33127900

RESUMEN

Quasi-two-dimensional perovskites have emerged as a new material platform for optoelectronics on account of its intrinsic stability. A major bottleneck to device performance is the high charge injection barrier caused by organic molecular layers on its basal plane, thus the best performing device currently relies on edge contact. Herein, by leveraging on van der Waals coupling and energy level matching between two-dimensional Ruddlesden-Popper perovskite and graphene, we show that the plane-contacted perovskite and graphene interface presents a lower barrier than gold for charge injection. Electron tunneling across the interface occurs via a gate-tunable, direct tunneling-to-field emission mechanism with increasing bias, and photoinduced charge transfer occurs at femtosecond timescale (~50 fs). Field effect transistors fabricated on molecularly thin Ruddlesden-Popper perovskite using graphene contact exhibit electron mobilities ranging from 0.1 to 0.018 cm2V-1s-1 between 1.7 to 200 K. Scanning tunneling spectroscopy studies reveal layer-dependent tunneling barrier and domain size on few-layered Ruddlesden-Popper perovskite.

5.
Nanoscale Horiz ; 5(11): 1500-1508, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32996533

RESUMEN

Nanophotonics based on high refractive index dielectrics relies on appreciable contrast between the indices of designed nanostructures and their immediate surrounding, which can be achieved by the growth of thin films on low-index substrates. Here we propose the use of high index amorphous gallium phosphide (a-GaP), fabricated by radio-frequency sputter deposition, on top of a low refractive index glass substrate and thoroughly examine its nanophotonic properties. Spectral ellipsometry of the amorphous material demonstrates the optical properties to be considerably close to crystalline gallium phosphide (c-GaP), with low-loss transparency for wavelengths longer than 650 nm. When nanostructured into nanopatches, the second harmonic (SH) response of an individual a-GaP patch is characterized to be more than two orders of magnitude larger than the as-deposited unstructured film, with an anapole-like resonant behavior. Numerical simulations are in good agreement with the experimental results over a large spectral and geometrical range. Furthermore, by studying individual a-GaP nanopatches through non-degenerate pump-probe spectroscopy with sub-10 fs pulses, we find a more than 5% ultrafast modulation of the reflectivity that is accompanied by a slower decaying free carrier contribution, caused by absorption. Our investigations reveal a potential for a-GaP as an adequate inexpensive and CMOS-compatible material for nonlinear nanophotonic applications as well as for photocatalysis.

6.
Nano Lett ; 20(10): 7627-7634, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32936659

RESUMEN

Optical forces on nanostructures are usually characterized by their interaction with the electric field component of the light wave, given that most materials present negligible magnetic response at optical frequencies. This is not the case however of a high-refractive-index dielectric nanoantenna, which has been recently shown to efficiently support both electric and magnetic optical modes. In this work, we use a photoinduced force microscopy configuration to measure optically induced forces produced by a germanium nanoantenna on a surrounding silicon near-field probe. We reveal the spatial distribution, character, and magnitude of the generated forces when exciting the nanoantenna at its anapole state condition. We retrieve optical force maps showing values of up to 20 pN, which are found to be mainly magnetic in nature, according to our numerical simulations. The results of this investigation open new pathways for the study, detection, and generation of magnetic light forces at the nanometer scale.

7.
Sci Adv ; 6(34)2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32937366

RESUMEN

High-refractive index nanostructured dielectrics have the ability to locally enhance electromagnetic fields with low losses while presenting high third-order nonlinearities. In this work, we exploit these characteristics to achieve efficient ultrafast all-optical modulation in a crystalline gallium phosphide (GaP) nanoantenna through the optical Kerr effect (OKE) and two-photon absorption (TPA) in the visible/near-infrared range. We show that an individual GaP nanodisk can yield differential reflectivity modulations of up to ~40%, with characteristic modulation times between 14 and 66 fs, when probed at the anapole excitation (AE). Numerical simulations reveal that the AE represents a unique condition where both the OKE and TPA contribute with the same modulation sign, maximizing the response. These findings highly outperform previous reports on sub-100-fs all-optical switching from resonant nanoscale dielectrics, which have demonstrated modulation depths no larger than 0.5%, placing GaP nanoantennas as a promising choice for ultrafast all-optical modulation at the nanometer scale.

8.
ACS Nano ; 13(8): 9504-9510, 2019 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-31314482

RESUMEN

Two-dimensional (2D) hybrid organic-inorganic Ruddlesden-Popper perovskites (RPPs) have been recently shown to exhibit large nonlinear optical properties due to the strong excitonic effects present in their multiple quantum wells. In this work, we use nondegenerate pump-probe spectroscopy in the 600-1000 nm wavelength range to study the influence of nonlinear effects on the ultrafast dynamics of 2D RPP thin flakes. We find that, under sub-bandgap excitation, ∼100 nm thick perovskite sheets allow up to ∼2% reflectivity modulation within a 20 fs period, due to the nonlinear optical Kerr effect and two-photon absorption, surpassing by a factor of ∼5 the reported nonlinear performance of photonic metasurfaces and single nanoantennas. When the excitation is resonant with the excitonic absorption, the ultrafast nature of the nonlinear response is lost due to the presence of linear absorption creating long-lived free carriers. Our results suggest that 2D RPPs are potential nanoscale all-optical modulators in the visible/near-infrared waveband for applications such as ultrafast information processing, optical data transmission, and high-performance computing.

9.
Sci Adv ; 5(6): eaaw3262, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31214652

RESUMEN

Gallium phosphide (GaP) is one of the few available materials with strong optical nonlinearity and negligible losses in the visible (λ > 450 nm) and near-infrared regime. In this work, we demonstrate that a GaP film can generate sub-30-fs (full width at half maximum) transmission modulation of up to ~70% in the 600- to 1000-nm wavelength range. Nonlinear simulations using parameters measured by the Z-scan approach indicate that the transmission modulation arises from the optical Kerr effect and two-photon absorption. Because of the absence of linear absorption, no slower free-carrier contribution is detected. These findings place GaP as a promising ultrafast material for all-optical switching at modulation speeds of up to 20 THz.

10.
Adv Mater ; 31(29): e1902685, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31157473

RESUMEN

Materials with large optical nonlinearity, especially in the visible spectral region, are in great demand for applications in all-optical information processing and quantum optics. 2D hybrid Ruddlesden-Popper-type halide perovskites (RPPs) with tunable ultraviolet-to-visible direct bandgaps exhibit large nonlinear optical responses due to the strong excitonic effects present in their multiple quantum wells. Using a microscopic Z-scan setup with femtosecond laser pulses tunable across the visible spectrum, it is demonstrated that single-crystalline lead halide RPP nanosheets possess unprecedentedly large nonlinear refraction and absorption coefficients near excitonic resonances. A room-temperature insulator (exciton)-metal (plasma) Mott transition is found to occur near the exciton resonance of the thinnest qunatum-well RPPs, boosting the nonlinear response. Owing to the rapidly changing refractive index near resonance, a single RPP crystal can exhibit different nonlinear functionalities across the excitation spectrum. The results suggest that RPPs are efficient nonlinear materials in the visible waveband, indicating their potential use in integrated nonlinear photonic applications such as optical modulation and switching.

11.
Nano Lett ; 18(12): 7896-7900, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30449109

RESUMEN

Dielectric nanoantennas have recently emerged as promising elements for nonlinear and ultrafast nanophotonics due to their ability to concentrate light on the nanometer scale with low losses, while exhibiting large nonlinear susceptibilities. In this work, we demonstrate that single Si nanodisks covered with a thin 30 nm thick layer of Au can generate positive and negative sub-20 fs reflectivity modulations of ∼0.3% in the vicinity of the first-order anapole mode, when excited around the second-order anapole mode. The experimental results, characterized in the visible to near-infrared spectral range, suggest that the nonlinear optical Kerr effect is the responsible mechanism for the observed all-optical switching phenomena. These findings represent an important step toward nanoscale ultrafast all-optical signal processing.

12.
ACS Nano ; 12(1): 644-650, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29261278

RESUMEN

Two-dimensional hybrid organic-inorganic Ruddlesden-Popper perovskites (RPPs) have attracted considerable attention due to their rich photonic and optoelectronic properties. The natural multi-quantum-well structure of 2D RPPs has been predicted to exhibit a large third-order nonlinearity. However, nonlinear optical studies on 2D RPPs have previously been conducted only on bulk polycrystalline samples, in which only weak third-harmonic generation (THG) has been observed. Here, we perform parametric nonlinear optical characterization of 2D perovskite nanosheets mechanically exfoliated from four different lead halide RPP single crystals, from which we observe ultrastrong THG with a maximum effective third-order susceptibility (χ(3)) of 1.12 × 10-17 m2 V-2. A maximum conversion efficiency of 0.006% is attained, which is more than 5 orders of magnitude higher than previously reported values for 2D materials. The THG emission is resonantly enhanced at the excitonic band gap energy of the 2D RPP crystals and can be tuned from violet to red by selecting the RPP homologue with the requisite resonance. Due to signal depletion effects and phase-matching conditions, the strongest nonlinear response is achieved for thicknesses less than 100 nm.

13.
Adv Mater ; 30(4)2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29219211

RESUMEN

Controllable growth of highly crystalline transition metal dichalcogenide (TMD) patterns with regular morphology and unique edge structure is highly desired and important for fundamental research and potential applications. Here, single-crystalline MoS2 flakes are reported with regular trigonal symmetric patterns that can be homoepitaxially grown on MoS2 monolayer via chemical vapor deposition. The highly organized MoS2 patterns are rhombohedral (3R)-stacked with the underlying MoS2 monolayer, and their boundaries are predominantly terminated by zigzag Mo edge structure. The epitaxial MoS2 crystals can be tailored from compact triangles to fractal flakes, and the pattern formation can be explained by the anisotropic growth rates of the S and Mo edges under low sulfur chemical potential. The 3R-stacked MoS2 pattern demonstrates strong second and third-harmonic-generation signals, which exceed those reported for monolayer MoS2 by a factor of 6 and 4, correspondingly. This homoepitaxial growth approach for making highly organized TMD patterns is also demonstrated for WS2 .

14.
Nano Lett ; 17(4): 2647-2651, 2017 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-28288274

RESUMEN

High refractive index dielectric nanoantennas are expected to become key elements for nonlinear nano-optics applications due to their large nonlinearities, low energy losses, and ability to produce high electric field enhancements in relatively large nanoscale volumes. In this work, we show that the nonlinear response from a high-index dielectric nanoantenna can be significantly improved by adding a metallic component to build a metal-dielectric hybrid nanostructure. We demonstrate that the plasmonic resonance of a Au nanoring can boost the anapole mode supported by a Si nanodisk, strongly enhancing the electric field inside the large third-order susceptibility dielectric. As a result, a high third harmonic conversion efficiency, which reaches 0.007% at a third harmonic wavelength of 440 nm, is obtained. In addition, by suitably modifying geometrical parameters of the hybrid nanoantenna, we tune the enhanced third harmonic emission throughout the optical regime. Coupling metallic and dielectric nanoantennas to expand the potential of subwavelength structures opens new paths for efficient nonlinear optical effects in the visible range on the nanoscale.

15.
Nano Lett ; 17(2): 1219-1225, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28094990

RESUMEN

We present all-dielectric gallium phosphide (GaP) nanoantennas as an efficient nanophotonic platform for surface-enhanced second harmonic generation (SHG) and fluorescence (SEF), showing negligible losses in the visible range. Employing single GaP nanodisks, we observe an increase of more than 3 orders of magnitude in the SHG conversion signal in comparison with the bulk. This constitutes an SHG efficiency as large as 0.0002%, which is to the best of our knowledge the highest yet achieved value for a single nano-object in the optical region. Furthermore, we show that GaP dimers with 35 nm gap can enhance up to 3600 times the fluorescence emission of dyes located in the gap of the nanoantenna. This is accomplished by a fluorescence lifetime reduction of at least 22 times, accompanied by a high-intensity field confinement in the gap region. These results open new avenues for low-loss nanophotonics in the optical regime.

16.
Nat Commun ; 8: 13906, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-28054546

RESUMEN

In emerging optoelectronic applications, such as water photolysis, exciton fission and novel photovoltaics involving low-dimensional nanomaterials, hot-carrier relaxation and extraction mechanisms play an indispensable and intriguing role in their photo-electron conversion processes. Two-dimensional transition metal dichalcogenides have attracted much attention in above fields recently; however, insight into the relaxation mechanism of hot electron-hole pairs in the band nesting region denoted as C-excitons, remains elusive. Using MoS2 monolayers as a model two-dimensional transition metal dichalcogenide system, here we report a slower hot-carrier cooling for C-excitons, in comparison with band-edge excitons. We deduce that this effect arises from the favourable band alignment and transient excited-state Coulomb environment, rather than solely on quantum confinement in two-dimension systems. We identify the screening-sensitive bandgap renormalization for MoS2 monolayer/graphene heterostructures, and confirm the initial hot-carrier extraction for the C-exciton state with an unprecedented efficiency of 80%, accompanied by a twofold reduction in the exciton binding energy.

17.
ACS Nano ; 11(1): 953-960, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-27977932

RESUMEN

Benefiting from large intrinsic nonlinearities, low absorption, and high field enhancement abilities, all-dielectric nanoantennas are considered essential for efficient nonlinear processes at subwavelength volumes. In particular, when the dielectric nanoantenna supports the nonradiating anapole mode, characterized by a minimum in the extinction cross section and a maximum electric energy within the material, third harmonic generation (THG) processes can be greatly enhanced. In this work, we demonstrate that a higher-order anapole mode in a 200 nm thick germanium nanodisk delivers the highest THG efficiency on the nanoscale at optical frequencies. By doubling the diameter of a disk supporting the fundamental anapole mode, we discover the emergence of an anapole mode of higher order, with a valley in the extinction cross section significantly narrower than that of the fundamental anapole. Under this condition, we observe a highly improved electric field confinement effect within the dielectric disk, leading to THG conversion efficiencies as large as 0.001% at a third harmonic wavelength of 550 nm. In addition, by mapping the THG emission across the nanodisk, we are able to unveil the anapole near-field intensity distributions, which show excellent agreement with numerical simulations. Our findings remarkably expand contemporary knowledge on localized modes in dielectric nanosystems, revealing crucial elements for the elaboration of highly efficient frequency upconversion nanodevices.

18.
Nano Lett ; 16(7): 4635-40, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27331867

RESUMEN

We present an all-dielectric germanium nanosystem exhibiting a strong third order nonlinear response and efficient third harmonic generation in the optical regime. A thin germanium nanodisk shows a pronounced valley in its scattering cross section at the dark anapole mode, while the electric field energy inside the disk is maximized due to high confinement within the dielectric. We investigate the dependence of the third harmonic signal on disk size and pump wavelength to reveal the nature of the anapole mode. Each germanium nanodisk generates a high effective third order susceptibility of χ((3)) = 4.3 × 10(-9) esu, corresponding to an associated third harmonic conversion efficiency of 0.0001% at an excitation wavelength of 1650 nm, which is 4 orders of magnitude greater than the case of an unstructured germanium reference film. Furthermore, the nonlinear conversion via the anapole mode outperforms that via the radiative dipolar resonances by about 1 order of magnitude, which is consistent with our numerical simulations. These findings open new possibilities for the optimization of upconversion processes on the nanoscale through the appropriate engineering of suitable dielectric materials.

19.
Nat Commun ; 7: 11283, 2016 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-27150276

RESUMEN

Impressive properties arise from the atomically thin nature of transition metal dichalcogenide two-dimensional materials. However, being atomically thin limits their optical absorption or emission. Hence, enhancing their photoluminescence by plasmonic nanostructures is critical for integrating these materials in optoelectronic and photonic devices. Typical photoluminescence enhancement from transition metal dichalcogenides is 100-fold, with recent enhancement of 1,000-fold achieved by simultaneously enhancing absorption, emission and directionality of the system. By suspending WSe2 flakes onto sub-20-nm-wide trenches in gold substrate, we report a giant photoluminescence enhancement of ∼20,000-fold. It is attributed to an enhanced absorption of the pump laser due to the lateral gap plasmons confined in the trenches and the enhanced Purcell factor by the plasmonic nanostructure. This work demonstrates the feasibility of giant photoluminescence enhancement in WSe2 with judiciously designed plasmonic nanostructures and paves a way towards the implementation of plasmon-enhanced transition metal dichalcogenide photodetectors, sensors and emitters.

20.
Nat Commun ; 6: 7915, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26238815

RESUMEN

Nanoplasmonics has recently revolutionized our ability to control light on the nanoscale. Using metallic nanostructures with tailored shapes, it is possible to efficiently focus light into nanoscale field 'hot spots'. High field enhancement factors have been achieved in such optical nanoantennas, enabling transformative science in the areas of single molecule interactions, highly enhanced nonlinearities and nanoscale waveguiding. Unfortunately, these large enhancements come at the price of high optical losses due to absorption in the metal, severely limiting real-world applications. Via the realization of a novel nanophotonic platform based on dielectric nanostructures to form efficient nanoantennas with ultra-low light-into-heat conversion, here we demonstrate an approach that overcomes these limitations. We show that dimer-like silicon-based single nanoantennas produce both high surface enhanced fluorescence and surface enhanced Raman scattering, while at the same time generating a negligible temperature increase in their hot spots and surrounding environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...