Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34155145

RESUMEN

In rice, a small increase in nighttime temperature reduces grain yield and quality. How warm nighttime temperatures (WNT) produce these detrimental effects is not well understood, especially in field conditions where the typical day-to-night temperature fluctuation exceeds the mild increase in nighttime temperature. We observed genome-wide disruption of gene expression timing during the reproductive phase in field-grown rice panicles acclimated to 2 to 3 °C WNT. Transcripts previously identified as rhythmically expressed with a 24-h period and circadian-regulated transcripts were more sensitive to WNT than were nonrhythmic transcripts. The system-wide perturbations in transcript levels suggest that WNT disrupt the tight temporal coordination between internal molecular events and the environment, resulting in reduced productivity. We identified transcriptional regulators whose predicted targets are enriched for sensitivity to WNT. The affected transcripts and candidate regulators identified through our network analysis explain molecular mechanisms driving sensitivity to WNT and identify candidates that can be targeted to enhance tolerance to WNT.


Asunto(s)
Ritmo Circadiano/genética , Oryza/crecimiento & desarrollo , Oryza/genética , Temperatura , Transcriptoma/genética , Agricultura , Biomasa , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genes de Plantas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Factores de Tiempo , Factores de Transcripción/metabolismo , Transcripción Genética
2.
Plant Mol Biol ; 101(1-2): 1-19, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31062216

RESUMEN

KEY MESSAGE: The circadian clock controls many molecular activities, impacting experimental interpretation. We quantify the genome-wide effects of time-of-day on the heat-shock response and the effects of "diurnal bias" in stress experiments. Heat stress has significant adverse effects on plant productivity worldwide. Most experiments examining heat stress are performed during daytime hours, generating a 'diurnal bias' in the pathways and regulatory mechanisms identified. Such bias may confound downstream interpretations and limit our understanding of the full response to heat stress. Here we show that the transcriptional and physiological responses to a sudden heat shock in Arabidopsis are profoundly sensitive to the time of day. We observe that plant tolerance and acclimation to heat shock vary throughout the day and are maximal at dusk. Consistently, over 75% of heat-responsive transcripts show a time of day-dependent response, including many previously characterized heat-response genes. This temporal sensitivity implies a complex interaction between time and temperature where daily variations in basal transcription influence thermotolerance. When we examined these transcriptional responses, we uncovered novel night-response genes and cis-regulatory elements, underpinning new aspects of heat stress responses not previously appreciated. Exploiting this temporal variation can be applied to most environmental responses to understand the underlying network wiring. Therefore, we propose that using time as a perturbagen is an approach that will enhance our understanding of plant regulatory networks and responses to environmental stresses.


Asunto(s)
Arabidopsis/fisiología , Relojes Circadianos/genética , Redes Reguladoras de Genes , Genoma de Planta/genética , Proteínas de Choque Térmico/genética , Respuesta al Choque Térmico/genética , Aclimatación , Arabidopsis/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Calor , Plantones/genética , Plantones/fisiología , Estrés Fisiológico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Science ; 349(6247): 535-9, 2015 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-26228148

RESUMEN

The actin cross-linking domain (ACD) is an actin-specific toxin produced by several pathogens, including life-threatening spp. of Vibrio cholerae, Vibrio vulnificus, and Aeromonas hydrophila. Actin cross-linking by ACD is thought to lead to slow cytoskeleton failure owing to a gradual sequestration of actin in the form of nonfunctional oligomers. Here, we found that ACD converted cytoplasmic actin into highly toxic oligomers that potently "poisoned" the ability of major actin assembly proteins, formins, to sustain actin polymerization. Thus, ACD can target the most abundant cellular protein by using actin oligomers as secondary toxins to efficiently subvert cellular functions of actin while functioning at very low doses.


Asunto(s)
Actinas/metabolismo , Antígenos Bacterianos/química , Antígenos Bacterianos/toxicidad , Toxinas Bacterianas/química , Toxinas Bacterianas/toxicidad , Proteínas Fetales/antagonistas & inhibidores , Proteínas de Microfilamentos/antagonistas & inhibidores , Proteínas Nucleares/antagonistas & inhibidores , Animales , Antígenos Bacterianos/genética , Toxinas Bacterianas/genética , Línea Celular , Forminas , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Polimerizacion/efectos de los fármacos , Estructura Terciaria de Proteína , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...