Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Immunol ; 23(12): 1735-1748, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36456734

RESUMEN

The non-pathogenic TH17 subset of helper T cells clears fungal infections, whereas pathogenic TH17 cells cause inflammation and tissue damage; however, the mechanisms controlling these distinct responses remain unclear. Here we found that fungi sensing by the C-type lectin dectin-1 in human dendritic cells (DCs) directed the polarization of non-pathogenic TH17 cells. Dectin-1 signaling triggered transient and intermediate expression of interferon (IFN)-ß in DCs, which was mediated by the opposed activities of transcription factors IRF1 and IRF5. IFN-ß-induced signaling led to integrin αvß8 expression directly and to the release of the active form of the cytokine transforming growth factor (TGF)-ß indirectly. Uncontrolled IFN-ß responses as a result of IRF1 deficiency induced high expression of the IFN-stimulated gene BST2 in DCs and restrained TGF-ß activation. Active TGF-ß was required for polarization of non-pathogenic TH17 cells, whereas pathogenic TH17 cells developed in the absence of active TGF-ß. Thus, dectin-1-mediated modulation of type I IFN responses allowed TGF-ß activation and non-pathogenic TH17 cell development during fungal infections in humans.


Asunto(s)
Células Dendríticas , Interferón Tipo I , Micosis , Humanos , Citocinas/metabolismo , Células Dendríticas/metabolismo , Interferón Tipo I/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Células Th17/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Micosis/inmunología
2.
J Leukoc Biol ; 112(2): 289-298, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34982481

RESUMEN

Pathogens trigger multiple pattern recognition receptors (PRRs) that together dictate innate and adaptive immune responses. Understanding the crosstalk between PRRs is important to enhance vaccine efficacy. Abortive HIV-1 RNA transcripts are produced during acute and chronic HIV-1 infection and are known ligands for different PRRs, leading to antiviral and proinflammatory responses. Here, we have investigated the crosstalk between responses induced by these 58 nucleotide-long HIV-1 RNA transcripts and different TLR ligands. Costimulation of dendritic cells (DCs) with abortive HIV-1 RNA and TLR7/8 agonist R848, but not other TLR agonists, resulted in enhanced antiviral type I IFN responses as well as adaptive immune responses via the induction of DC-mediated T helper 1 (TH 1) responses and IFNγ+ CD8+ T cells. Our data underscore the importance of crosstalk between abortive HIV-1 RNA and R848-induced signaling for the induction of effective antiviral immunity.


Asunto(s)
VIH-1 , Adyuvantes Inmunológicos , Antivirales , Linfocitos T CD8-positivos , Células Dendríticas , VIH-1/fisiología , Inmunidad Innata , ARN , Receptores de Reconocimiento de Patrones
3.
Eur J Immunol ; 51(10): 2464-2477, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34223639

RESUMEN

The proinflammatory cytokine IL-1ß mediates high levels of immune activation observed during acute and chronic human immunodeficiency virus 1 (HIV-1) infection. Little is known about the mechanisms that drive IL-1ß activation during HIV-1 infection. Here, we have identified a crucial role for abortive HIV-1 RNAs in inducing IL-1ß in humans. Abortive HIV-1 RNAs were sensed by protein kinase RNA-activated (PKR), which triggered activation of the canonical NLRP3 inflammasome and caspase-1, leading to pro-IL-1ß processing and secretion. PKR activated the inflammasome via ROS generation and MAP kinases ERK1/2, JNK, and p38. Inhibition of PKR during HIV-1 infection blocked IL-1ß production. As abortive HIV-1 RNAs are produced during productive infection and latency, our data strongly suggest that targeting PKR signaling might attenuate immune activation during acute and chronic HIV-1 infection.


Asunto(s)
Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/fisiología , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , ARN Viral/metabolismo , eIF-2 Quinasa/metabolismo , Interacciones Huésped-Patógeno , Humanos , Sistema de Señalización de MAP Quinasas , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , ARN Viral/genética , Especies Reactivas de Oxígeno/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo , Transducción de Señal
4.
Viruses ; 12(7)2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32708557

RESUMEN

The mitochondrial antiviral protein MAVS is a key player in the induction of antiviral responses; however, human immunodeficiency virus 1 (HIV-1) is able to suppress these responses. Two linked single nucleotide polymorphisms (SNPs) in the MAVS gene render MAVS insensitive to HIV-1-dependent suppression, and have been shown to be associated with a lower viral load at set point and delayed increase of viral load during disease progression. Here, we studied the underlying mechanisms involved in the control of viral replication in individuals homozygous for this MAVS genotype. We observed that individuals with the MAVS minor genotype had more stable total CD4+ T cell counts during a 7-year follow up and had lower cell-associated proviral DNA loads. Genetic variation in MAVS did not affect immune activation levels; however, a significantly lower percentage of naïve CD4+ but not CD8+ T cells was observed in the MAVS minor genotype. In vitro HIV-1 infection of peripheral blood mononuclear cells (PBMCs) from healthy donors with the MAVS minor genotype resulted in decreased viral replication. Although the precise underlying mechanism remains unclear, our data suggest that the protective effect of the MAVS minor genotype may be exerted by the initiation of local innate responses affecting viral replication and CD4+ T cell susceptibility.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Linfocitos T CD4-Positivos/virología , Infecciones por VIH/virología , VIH-1/fisiología , Replicación Viral/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Citocinas/metabolismo , ADN Viral/genética , Regulación Viral de la Expresión Génica , Variación Genética/genética , Infecciones por VIH/inmunología , Humanos , Carga Viral/genética
5.
Front Immunol ; 11: 8, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32038656

RESUMEN

Strong innate and adaptive immune responses are paramount in combating viral infections. Dendritic cells (DCs) detect viral infections via cytosolic RIG-I like receptors (RLRs) RIG-I and MDA5 leading to MAVS-induced immunity. The DEAD-box RNA helicase DDX3 senses abortive human immunodeficiency virus 1 (HIV-1) transcripts and induces MAVS-dependent type I interferon (IFN) responses, suggesting that abortive HIV-1 RNA transcripts induce antiviral immunity. Little is known about the induction of antiviral immunity by DDX3-ligand abortive HIV-1 RNA. Here we synthesized a 58 nucleotide-long capped RNA (HIV-1 Cap-RNA58) that mimics abortive HIV-1 RNA transcripts. HIV-1 Cap-RNA58 induced potent type I IFN responses in monocyte-derived DCs, monocytes, macrophages and primary CD1c+ DCs. Compared with RLR agonist poly-I:C, HIV-1 Cap-RNA58 induced comparable levels of type I IFN responses, identifying HIV-1 Cap-RNA58 as a potent trigger of antiviral immunity. In monocyte-derived DCs, HIV-1 Cap-RNA58 activated the transcription factors IRF3 and NF-κB. Moreover, HIV-1 Cap-RNA58 induced DC maturation and the expression of pro-inflammatory cytokines. HIV-1 Cap-RNA58-stimulated DCs induced proliferation of CD4+ and CD8+ T cells and differentiated naïve T helper (TH) cells toward a TH2 phenotype. Importantly, treatment of DCs with HIV-1 Cap-RNA58 resulted in an efficient antiviral innate immune response that reduced ongoing HIV-1 replication in DCs. Our data strongly suggest that HIV-1 Cap-RNA58 induces potent innate and adaptive immune responses, making it an interesting addition in vaccine design strategies.


Asunto(s)
Inmunidad Adaptativa , Infecciones por VIH/inmunología , VIH-1/genética , Interacciones Microbiota-Huesped/inmunología , Inmunidad Innata , ARN Viral/farmacología , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Células Dendríticas/inmunología , Células Dendríticas/virología , Infecciones por VIH/virología , Humanos , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/metabolismo , Macrófagos/inmunología , Macrófagos/virología , Monocitos/inmunología , Monocitos/virología , FN-kappa B/metabolismo , ARN Viral/síntesis química , ARN Viral/inmunología , Transducción de Señal/efectos de los fármacos , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Transcripción Genética
6.
Cytokine Growth Factor Rev ; 40: 32-39, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29580812

RESUMEN

HIV-1 sensors and their signaling features have been an ongoing topic of intense research over the last decade, as these mechanisms fail to establish protective immunity against HIV-1. Here, we discuss how HIV-1 infects dendritic cells (DCs) and which sensors play a role in recognizing viral DNA and RNA in these specialized immune cells. We will elaborate on the RNA helicase DDX3, which is crucial in translation initiation of HIV-1 mRNA, but also fulfills an important role as RNA sensor and inducer of antiviral immunity in DCs. As DDX3 is indispensable for HIV-1 replication, the virus cannot escape sensing by DDX3, which is an important aspect of its function. Last but not least, we will discuss how HIV-1 suppresses DDX3 sensing and how this impacts the viral load in HIV-1-infected individuals.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , ADN Viral/inmunología , Células Dendríticas/virología , Infecciones por VIH/inmunología , VIH-1/inmunología , Interacciones Huésped-Patógeno/inmunología , ARN Viral/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Moléculas de Adhesión Celular/metabolismo , Proteínas de Ciclo Celular/metabolismo , ARN Helicasas DEAD-box/inmunología , Células Dendríticas/inmunología , Humanos , Lectinas Tipo C/metabolismo , Iniciación de la Cadena Peptídica Traduccional/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Receptores de Superficie Celular/metabolismo , Carga Viral , Replicación Viral/fisiología , Quinasa Tipo Polo 1
7.
PLoS Pathog ; 13(11): e1006738, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29186193

RESUMEN

Follicular T helper cells (TFH) are fundamental in orchestrating effective antibody-mediated responses critical for immunity against viral infections and effective vaccines. However, it is unclear how virus infection leads to TFH induction. We here show that dengue virus (DENV) infection of human dendritic cells (DCs) drives TFH formation via crosstalk of RIG-I-like receptor (RLR) RIG-I and MDA5 with type I Interferon (IFN) signaling. DENV infection leads to RLR-dependent IKKε activation, which phosphorylates IFNα/ß receptor-induced STAT1 to drive IL-27 production via the transcriptional complex ISGF3. Inhibiting RLR activation as well as neutralizing antibodies against IL-27 prevented TFH formation. DENV-induced CXCR5+PD-1+Bcl-6+ TFH cells secreted IL-21 and activated B cells to produce IgM and IgG. Notably, RLR activation by synthetic ligands also induced IL-27 secretion and TFH polarization. These results identify an innate mechanism by which antibodies develop during viral disease and identify RLR ligands as potent adjuvants for TFH-promoting vaccination strategies.


Asunto(s)
Anticuerpos Antivirales/inmunología , Virus del Dengue/fisiología , Dengue/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Formación de Anticuerpos , Linfocitos B/inmunología , Proteína 58 DEAD Box/genética , Proteína 58 DEAD Box/inmunología , Células Dendríticas/inmunología , Dengue/genética , Dengue/virología , Humanos , Helicasa Inducida por Interferón IFIH1/genética , Helicasa Inducida por Interferón IFIH1/inmunología , Interleucina-27/genética , Interleucina-27/inmunología , Interleucinas/genética , Interleucinas/inmunología , Activación de Linfocitos , Receptores Inmunológicos
8.
J Immunol ; 198(12): 4764-4771, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28507028

RESUMEN

Dengue virus (DENV) causes 400 million infections annually and is one of several viruses that can cause viral hemorrhagic fever, which is characterized by uncontrolled immune activation resulting in high fever and internal bleeding. Although the underlying mechanisms are unknown, massive cytokine secretion is thought to be involved. Dendritic cells (DCs) are the main target cells of DENV, and we investigated their role in DENV-induced cytokine production and adaptive immune responses. DENV infection induced DC maturation and secretion of IL-1ß, IL-6, and TNF. Inhibition of DENV RNA replication abrogated these responses. Notably, silencing of RNA sensors RIG-I or MDA5 abrogated DC maturation, as well as cytokine responses by DENV-infected DCs. DC maturation was induced by type I IFN responses because inhibition of IFN-α/ß receptor signaling abrogated DENV-induced DC maturation. Moreover, DENV infection of DCs resulted in CCL2, CCL3, and CCL4 expression, which was abrogated after RIG-I and MDA5 silencing. DCs play an essential role in TH cell differentiation, and we show that RIG-I and MDA5 triggering by DENV leads to TH1 polarization, which is characterized by high levels of IFN-γ. Notably, cytokines IL-6, TNF, and IFN-γ and chemokines CCL2, CCL3, and CCL4 have been associated with disease severity, endothelial dysfunction, and vasodilation. Therefore, we identified RIG-I and MDA5 as critical players in innate and adaptive immune responses against DENV, and targeting these receptors has the potential to decrease hemorrhagic fever in patients.


Asunto(s)
Proteína 58 DEAD Box/inmunología , Células Dendríticas/inmunología , Virus del Dengue/inmunología , Células TH1/inmunología , Diferenciación Celular , Quimiocina CCL2/genética , Quimiocina CCL2/inmunología , Quimiocina CCL3/genética , Quimiocina CCL3/inmunología , Quimiocina CCL4/genética , Quimiocina CCL4/inmunología , Proteína 58 DEAD Box/deficiencia , Proteína 58 DEAD Box/genética , Proteína 58 DEAD Box/metabolismo , Células Dendríticas/virología , Humanos , Helicasa Inducida por Interferón IFIH1/deficiencia , Helicasa Inducida por Interferón IFIH1/inmunología , Helicasa Inducida por Interferón IFIH1/metabolismo , Interferón gamma/inmunología , Interferón gamma/metabolismo , Interleucina-1beta/inmunología , Interleucina-1beta/metabolismo , Interleucina-6/inmunología , Interleucina-6/metabolismo , Receptores Inmunológicos , Células TH1/fisiología , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
9.
Sci Rep ; 7: 45910, 2017 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-28393916

RESUMEN

Helminth parasites control host-immune responses by secreting immunomodulatory glycoproteins. Clinical trials and mouse model studies have demonstrated the potential of helminth-derived glycoproteins for the treatment of immune-related diseases, like allergies and autoimmune diseases. Studies are however hampered by the limited availability of native parasite-derived proteins. Moreover, recombinant protein production systems have thus far been unable to reconstitute helminth-like glycosylation essential for the functionality of some helminth glycoproteins. Here we exploited the flexibility of the N-glycosylation machinery of plants to reconstruct the helminth glycoproteins omega-1 and kappa-5, two major constituents of immunomodulatory Schistosoma mansoni soluble egg antigens. Fine-tuning transient co-expression of specific glycosyltransferases in Nicotiana benthamiana enabled the synthesis of Lewis X (LeX) and LDN/LDN-F glycan motifs as found on natural omega-1 and kappa-5, respectively. In vitro and in vivo evaluation of the introduction of native LeX motifs on plant-produced omega-1 confirmed that LeX on omega-1 contributes to the glycoprotein's Th2-inducing properties. These data indicate that mimicking the complex carbohydrate structures of helminths in plants is a promising strategy to allow targeted evaluation of therapeutic glycoproteins for the treatment of inflammatory disorders. In addition, our results offer perspectives for the development of effective anti-helminthic vaccines by reconstructing native parasite glycoprotein antigens.


Asunto(s)
Glicoproteínas/inmunología , Proteínas del Helminto/inmunología , Nicotiana/inmunología , Schistosoma mansoni/inmunología , Animales , Anticuerpos Antihelmínticos/genética , Anticuerpos Antihelmínticos/inmunología , Anticuerpos Antihelmínticos/metabolismo , Antígenos Helmínticos/genética , Antígenos Helmínticos/inmunología , Antígenos Helmínticos/metabolismo , Proteínas del Huevo/genética , Proteínas del Huevo/inmunología , Proteínas del Huevo/metabolismo , Expresión Génica/inmunología , Ingeniería Genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosilación , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Inmunomodulación/genética , Inmunomodulación/inmunología , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Schistosoma mansoni/genética , Schistosoma mansoni/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Vacunas/inmunología
11.
Nat Immunol ; 18(2): 225-235, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28024153

RESUMEN

The mechanisms by which human immunodeficiency virus 1 (HIV-1) avoids immune surveillance by dendritic cells (DCs), and thereby prevents protective adaptive immune responses, remain poorly understood. Here we showed that HIV-1 actively arrested antiviral immune responses by DCs, which contributed to efficient HIV-1 replication in infected individuals. We identified the RNA helicase DDX3 as an HIV-1 sensor that bound abortive HIV-1 RNA after HIV-1 infection and induced DC maturation and type I interferon responses via the signaling adaptor MAVS. Notably, HIV-1 recognition by the C-type lectin receptor DC-SIGN activated the mitotic kinase PLK1, which suppressed signaling downstream of MAVS, thereby interfering with intrinsic host defense during HIV-1 infection. Finally, we showed that PLK1-mediated suppression of DDX3-MAVS signaling was a viral strategy that accelerated HIV-1 replication in infected individuals.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células Dendríticas/virología , Infecciones por VIH/inmunología , VIH-1/fisiología , Evasión Inmune , Inmunidad , Macrófagos/virología , Proteínas Adaptadoras Transductoras de Señales/genética , Extractos Celulares , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Estudios de Cohortes , ARN Helicasas DEAD-box/metabolismo , Células Dendríticas/inmunología , Regulación Viral de la Expresión Génica , Células HEK293 , Infecciones por VIH/virología , Interacciones Huésped-Patógeno/genética , Humanos , Interferón beta/sangre , Macrófagos/inmunología , Polimorfismo de Nucleótido Simple , ARN Viral/inmunología , ARN Viral/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo , Transducción de Señal , Carga Viral/genética
12.
Nature ; 540(7633): 448-452, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27919079

RESUMEN

The most prevalent route of HIV-1 infection is across mucosal tissues after sexual contact. Langerhans cells (LCs) belong to the subset of dendritic cells (DCs) that line the mucosal epithelia of vagina and foreskin and have the ability to sense and induce immunity to invading pathogens. Anatomical and functional characteristics make LCs one of the primary targets of HIV-1 infection. Notably, LCs form a protective barrier against HIV-1 infection and transmission. LCs restrict HIV-1 infection through the capture of HIV-1 by the C-type lectin receptor Langerin and subsequent internalization into Birbeck granules. However, the underlying molecular mechanism of HIV-1 restriction in LCs remains unknown. Here we show that human E3-ubiquitin ligase tri-partite-containing motif 5α (TRIM5α) potently restricts HIV-1 infection of LCs but not of subepithelial DC-SIGN+ DCs. HIV-1 restriction by TRIM5α was thus far considered to be reserved to non-human primate TRIM5α orthologues, but our data strongly suggest that human TRIM5α is a cell-specific restriction factor dependent on C-type lectin receptor function. Our findings highlight the importance of HIV-1 binding to Langerin for the routeing of HIV-1 into the human TRIM5α-mediated restriction pathway. TRIM5α mediates the assembly of an autophagy-activating scaffold to Langerin, which targets HIV-1 for autophagic degradation and prevents infection of LCs. By contrast, HIV-1 binding to DC-SIGN+ DCs leads to disassociation of TRIM5α from DC-SIGN, which abrogates TRIM5α restriction. Thus, our data strongly suggest that restriction by human TRIM5α is controlled by C-type-lectin-receptor-dependent uptake of HIV-1, dictating protection or infection of human DC subsets. Therapeutic interventions that incorporate C-type lectin receptors and autophagy-targeting strategies could thus provide cell-mediated resistance to HIV-1 in humans.


Asunto(s)
Antígenos CD/metabolismo , Autofagia , Proteínas Portadoras/metabolismo , VIH-1/fisiología , Células de Langerhans/metabolismo , Células de Langerhans/virología , Lectinas Tipo C/metabolismo , Lectinas de Unión a Manosa/metabolismo , Receptores del VIH/metabolismo , Factores de Restricción Antivirales , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , Infecciones por VIH/transmisión , VIH-1/inmunología , Interacciones Huésped-Patógeno , Humanos , Inmunidad Mucosa , Células de Langerhans/citología , Células de Langerhans/inmunología , Receptores de Superficie Celular/metabolismo , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas
13.
Nat Rev Immunol ; 16(7): 433-48, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27291962

RESUMEN

Pathogen recognition by C-type lectin receptors (CLRs) expressed by dendritic cells is important not only for antigen presentation, but also for the induction of appropriate adaptive immune responses via T helper (TH) cell differentiation. CLRs act either by themselves or in cooperation with other receptors, such as other CLRs, Toll-like receptors and interferon receptors, to induce signalling pathways that trigger specialized cytokine programmes for polarization of TH cell differentiation. In this Review, we discuss how triggering of the prototypical CLRs leads to distinct pathogen-tailored TH cell responses and how we can harness our expanding knowledge for vaccine design and the treatment of inflammatory and malignant diseases.


Asunto(s)
Diferenciación Celular/inmunología , Lectinas Tipo C/inmunología , Activación de Linfocitos/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Humanos , Transducción de Señal/inmunología
14.
J Immunol ; 194(9): 4431-7, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25825449

RESUMEN

A hallmark of HIV-1 infection is the lack of sterilizing immunity. Dendritic cells (DCs) are crucial in the induction of immunity, and lack of DC activation might underlie the absence of an effective anti-HIV-1 response. We have investigated how HIV-1 infection affects maturation of DCs. Our data show that even though DCs are productively infected by HIV-1, infection does not induce DC maturation. HIV-1 infection actively suppresses DC maturation, as HIV-1 infection inhibited TLR-induced maturation of DCs and thereby decreased the immune stimulatory capacity of DCs. Interfering with SAMHD1 restriction further increased infection of DCs, but did not lead to DC maturation. Notably, higher infection observed with SAMHD1 depletion correlated with a stronger suppression of maturation. Furthermore, blocking reverse transcription rescued TLR-induced maturation. These data strongly indicate that HIV-1 replication does not trigger immune activation in DCs, but that HIV-1 escapes immune surveillance by actively suppressing DC maturation independent of SAMHD1. Elucidation of the mechanism of suppression can lead to promising targets for therapy or vaccine design.


Asunto(s)
Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Infecciones por VIH/inmunología , Infecciones por VIH/metabolismo , VIH-1/fisiología , Proteínas de Unión al GTP Monoméricas/metabolismo , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , Diferenciación Celular , Células Dendríticas/citología , Células Dendríticas/virología , Humanos , Inmunomodulación , Proteolisis , Transcripción Reversa , Proteína 1 que Contiene Dominios SAM y HD , Receptores Toll-Like/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Replicación Viral
15.
Nat Commun ; 5: 5074, 2014 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-25278262

RESUMEN

Dendritic cells (DCs) orchestrate antibody-mediated responses to combat extracellular pathogens including parasites by initiating T helper cell differentiation. Here we demonstrate that carbohydrate-specific signalling by DC-SIGN drives follicular T helper cell (TFH) differentiation via IL-27 expression. Fucose, but not mannose, engagement of DC-SIGN results in activation of IKKε, which collaborates with type I IFNR signalling to induce formation and activation of transcription factor ISGF3. Notably, ISGF3 induces expression of IL-27 subunit p28, and subsequent IL-27 secreted by DC-SIGN-primed DCs is pivotal for the induction of Bcl-6(+)CXCR5(+)PD-1(hi)Foxp1(lo) TFH cells, IL-21 secretion by TFH cells and T-cell-dependent IgG production by B cells. Thus, we have identified an essential role for DC-SIGN-induced ISGF3 by fucose-based PAMPs in driving IL-27 and subsequent TFH polarization, which might be harnessed for vaccination design.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Células Dendríticas/citología , Fucosa/química , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/metabolismo , Interleucina-27/metabolismo , Lectinas Tipo C/metabolismo , Receptores de Superficie Celular/metabolismo , Linfocitos T Colaboradores-Inductores/citología , Secuencias de Aminoácidos , Linfocitos B/citología , Diferenciación Celular , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Dimerización , Citometría de Flujo , Humanos , Inmunoglobulina G/química , Factor 7 Regulador del Interferón/metabolismo , Leucocitos Mononucleares/citología , Activación de Linfocitos/inmunología , Manosa/química , Proteínas Proto-Oncogénicas c-bcl-6 , Interferencia de ARN , Transducción de Señal
16.
Cell Host Microbe ; 16(1): 19-30, 2014 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-25011105

RESUMEN

The cytosolic sensor MDA5 is crucial for antiviral innate immune defense against various RNA viruses including measles virus; as such, many viruses have evolved strategies to antagonize the antiviral activity of MDA5. Here, we show that measles virus escapes MDA5 detection by targeting the phosphatases PP1α and PP1γ, which regulate MDA5 activity by removing an inhibitory phosphorylation mark. The V proteins of measles virus and the related paramyxovirus Nipah virus interact with PP1α/γ, preventing PP1-mediated dephosphorylation of MDA5 and thereby its activation. The PP1 interaction with the measles V protein is mediated by a conserved PP1-binding motif in the C-terminal region of the V protein. A recombinant measles virus expressing a mutant V protein deficient in PP1 binding is unable to antagonize MDA5 and is growth impaired due to its inability to suppress interferon induction. This identifies PP1 antagonism as a mechanism employed by paramyxoviruses for evading innate immune recognition.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Interacciones Huésped-Patógeno , Evasión Inmune , Virus del Sarampión/inmunología , Virus del Sarampión/fisiología , Fosfoproteínas/metabolismo , Proteína Fosfatasa 1/antagonistas & inhibidores , Proteínas Virales/metabolismo , Línea Celular , Humanos , Helicasa Inducida por Interferón IFIH1 , Virus Nipah/inmunología , Virus Nipah/fisiología , Proteínas Estructurales Virales/metabolismo
17.
Cell Host Microbe ; 16(1): 31-42, 2014 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-25011106

RESUMEN

Dendritic cells (DCs) are targets of measles virus (MV) and play central roles in viral dissemination. However, DCs express the RIG-I-like receptors (RLRs) RIG-I and Mda5 that sense MV and induce type I interferon (IFN) production. Given the potency of this antiviral response, RLRs are tightly regulated at various steps, including dephosphorylation by PP1 phosphatases, which induces their activation. We demonstrate that MV suppresses RIG-I and Mda5 by activating the C-type lectin DC-SIGN and inducing signaling that prevents RLR dephosphorylation. MV binding to DC-SIGN leads to activation of the kinase Raf-1, which induces the association of PP1 inhibitor I-1 with GADD34-PP1 holoenzymes, thereby inhibiting phosphatase activity. Consequently, GADD34-PP1 holoenzymes are unable to dephosphorylate RIG-I and Mda5, hence suppressing type I IFN responses and enhancing MV replication. Blocking DC-SIGN signaling allows RLR activation and suppresses MV infection of DCs. Thus, MV subverts DC-SIGN to control RLR activation and escape antiviral responses.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , ARN Helicasas DEAD-box/metabolismo , Células Dendríticas/inmunología , Interacciones Huésped-Patógeno , Lectinas Tipo C/metabolismo , Virus del Sarampión/inmunología , Proteína Fosfatasa 1/antagonistas & inhibidores , Receptores de Superficie Celular/metabolismo , Línea Celular , Proteína 58 DEAD Box , Células Dendríticas/virología , Humanos , Evasión Inmune , Virus del Sarampión/fisiología , Receptores Inmunológicos
18.
Nat Commun ; 5: 3898, 2014 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-24867235

RESUMEN

Carbohydrate-specific signalling through DC-SIGN provides dendritic cells with plasticity to tailor immunity to the nature of invading microbes. Here we demonstrate that recognition of fucose-expressing extracellular pathogens like Schistosoma mansoni and Helicobacter pylori by DC-SIGN favors T helper cell type-2 (TH2) responses via activation of atypical NF-κB family member Bcl3. Crosstalk between TLR and DC-SIGN signalling results in TLR-induced MK2-mediated phosphorylation of LSP1, associated with DC-SIGN, upon fucose binding. Subsequently, IKKε and CYLD are recruited to phosphorylated LSP1. IKKε activation is pivotal for suppression of CYLD deubiquitinase activity and subsequent nuclear translocation of ubiquitinated Bcl3. Bcl3 activation represses TLR-induced proinflammatory cytokine expression, while enhancing interleukin-10 (IL-10) and TH2-attracting chemokine expression, shifting TH differentiation from TH1 to TH2 polarization. Thus, DC-SIGN directs adaptive TH2 immunity to fucose-expressing pathogens via an IKKε-CYLD-dependent signalling pathway leading to Bcl3 activation, which might be targeted in vaccination strategies or to prevent aberrant inflammation and allergy.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Fucosa/metabolismo , Quinasa I-kappa B/metabolismo , Lectinas Tipo C/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Células Th2/inmunología , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Proteínas del Linfoma 3 de Células B , Diferenciación Celular/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Quimiocinas/genética , Quimiocinas/metabolismo , Enzima Desubiquitinante CYLD , Regulación hacia Abajo/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Helicobacter pylori/inmunología , Humanos , Mediadores de Inflamación/metabolismo , Antígeno Lewis X/metabolismo , Lipopolisacáridos/farmacología , Proteínas de Microfilamentos/metabolismo , Modelos Biológicos , FN-kappa B/metabolismo , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Unión Proteica/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Schistosoma mansoni/inmunología , Transducción de Señal/efectos de los fármacos , Células Th2/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
19.
Cell Host Microbe ; 15(4): 494-505, 2014 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-24721577

RESUMEN

Recognition of fungal pathogens by C-type lectin receptor (CLR) dectin-1 on human dendritic cells is essential for triggering protective antifungal TH1 and TH17 immune responses. We show that Fonsecaea monophora, a causative agent of chromoblastomycosis, a chronic fungal skin infection, evades these antifungal responses by engaging CLR mincle and suppressing IL-12, which drives TH1 differentiation. Dectin-1 triggering by F. monophora activates transcription factor IRF1, which is crucial for IL12A transcription via nucleosome remodeling. However, simultaneous F. monophora binding to mincle induces an E3 ubiquitin ligase Mdm2-dependent degradation pathway, via Syk-CARD9-mediated PKB signaling, that leads to loss of nuclear IRF1 activity, hence blocking IL12A transcription. The absence of IL-12 leads to impaired TH1 responses and promotes TH2 polarization. Notably, mincle is similarly exploited by other chromoblastomycosis-associated fungi to redirect TH responses. Thus, mincle is a fungal receptor that can suppress antifungal immunity and, as such, is a potential therapeutic target.


Asunto(s)
Subunidad p35 de la Interleucina-12/biosíntesis , Lectinas Tipo C/inmunología , Receptores Inmunológicos/inmunología , Saccharomycetales/inmunología , Proteínas Adaptadoras de Señalización CARD/inmunología , Diferenciación Celular/inmunología , Células Cultivadas , Cromoblastomicosis/inmunología , Células Dendríticas/inmunología , Humanos , Factor 1 Regulador del Interferón/biosíntesis , Factor 1 Regulador del Interferón/genética , Subunidad p35 de la Interleucina-12/genética , Subunidad p35 de la Interleucina-12/inmunología , Péptidos y Proteínas de Señalización Intracelular/inmunología , Proteínas Tirosina Quinasas/inmunología , Proteínas Proto-Oncogénicas c-mdm2/inmunología , Interferencia de ARN , ARN Interferente Pequeño , Quinasa Syk , Células TH1/inmunología , Células Th17/inmunología
20.
Future Microbiol ; 8(7): 839-54, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23841632

RESUMEN

Fungal infections are an emerging threat for human health. A coordinated host immune response is fundamental for successful elimination of an invading fungal microbe. A panel of C-type lectin receptors expressed on antigen-presenting dendritic cells enable innate recognition of fungal cell wall carbohydrates and tailors adaptive responses via the instruction of CD4⁺ T helper cell fates. Well-balanced T helper cell type 1 and IL-17-producing T helper cell responses are crucial in antifungal immunity and facilitate phagocytic clearance of fungal encounters. Strikingly, different classes of fungi trigger distinct sets of C-type lectin receptors to evoke a pathogen-specific T helper response. In this review, we outline the key roles of several C-type lectin receptors during the generation of protective antifungal immunity, with particular emphasis on the distinct signaling pathways and transcriptional programs triggered by these receptors, which collaborate to orchestrate polarization of the T helper response.


Asunto(s)
Hongos/inmunología , Inmunidad , Lectinas Tipo C/inmunología , Micosis/inmunología , Animales , Hongos/fisiología , Humanos , Micosis/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA