Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 921: 171070, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38382608

RESUMEN

In coastal lagoons, eutrophication and hydrology are interacting factors that produce distortions in biogeochemical nitrogen (N) and phosphorus (P) cycles. Such distortions affect nutrient relative availability and produce cascade consequences on primary producer's community and ecosystem functioning. In this study, the seasonal functioning of a coastal lagoon was investigated with a multielement approach, via the construction and analysis of network models. Spring and summer networks, both for N and P flows, have been simultaneously compiled for the northern transitional and southern confined area of the hypertrophic Curonian Lagoon (SE Baltic Sea). Ecological Network Analysis was applied to address the combined effect of hydrology and seasonality on biogeochemical processes. Results suggest that the ecosystem is more active and presents higher N and P fluxes in summer compared to spring, regardless of the area. Furthermore, larger internal recycling characterizes the confined compared to the transitional area, regardless of the season. The two areas differed in the fate of available nutrients. The transitional area received large riverine inputs that were mainly transferred to the sea without the conversion into primary producers' biomass. The confined area had fewer inputs but proportionally larger conversion into phytoplankton biomass. In summer, particularly in the confined area, primary production was inefficiently consumed by herbivores. Most phytoplanktonic N and P, in the confined area more than in the transitional area, were conveyed to the detritus pathway where P, more than N, was recycled, contributing to the unbalance in N:P stoichiometry and favouring N-fixing cyanobacteria over other phytoplankton groups. The findings of this study provide a comprehensive understanding of N and P circulation patterns in lagoon areas characterized by different hydrology. They also support the importance of a stoichiometric approach to trace relative differences in N and P recycling and abundance, that promote blooms, drive algal communities and whole ecosystem functioning.


Asunto(s)
Ecosistema , Nitrógeno , Nitrógeno/análisis , Fósforo/análisis , Biomasa , Fitoplancton , Eutrofización
2.
Ecol Evol ; 10(20): 11591-11606, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33144986

RESUMEN

Functional traits are becoming more common in the analysis of marine zooplankton community dynamics associated with environmental change. We used zooplankton groups with common functional properties to assess long-term trends in the zooplankton caused by certain environmental conditions in a highly eutrophicated gulf.Time series of zooplankton traits have been collected since the 1960s in the Gulf of Riga, Baltic Sea, and were analyzed using a combination of multivariate methods (principal coordinate analysis) and generalized additive models.One of the most significant changes was the considerable increase in the amount of the zooplankton functional groups (FGR) in coastal springtime communities, and dominance shifts from more complex to simpler organism groups-cladocerans and rotifers.The results also show that functional trait organism complexity (body size) decreased considerably due to cladoceran and rotifer increase following elevated water temperature. Salinity and oxygen had negligible effects on the zooplankton community.

3.
PeerJ ; 6: e5562, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30210945

RESUMEN

BACKGROUND: Copepods are major secondary producers in the World Ocean. They represent an important link between phytoplankton, microzooplankton and higher trophic levels such as fish. They are an important source of food for many fish species but also a significant producer of detritus. In the terms of the role they play in the marine food web, it is important to know how environmental variability affects the population of copepods. METHODS: The study of the zooplankton community in the south-eastern Baltic Sea conducted during a 24-month survey (from January 2010 to November 2011) resulted in the identification of 24 invertebrate species (10 copepods, seven cladocerans, four rotifers, one ctenophore, one larvacean, and one amphipod). Data were collected at two stations located in the open sea waters of the Gulf of Gdansk: the Gdansk Deep (P1) (54°50'N, 19°19'E) and in the western, inner part of the Gulf of Gdansk (P2) (54°32'N, 18°48.2'E). The vertical hauls were carried out with the use of two kinds of plankton nets with a mesh size of 100 µm: a Copenhagen net (in 2010), and a WP-2 net (in 2011). RESULTS: The paper describes the seasonal changes in the abundance and biomass of copepods, taking into account the main Baltic calanoid copepod taxa (Acartia spp., Temora longicornis and Pseudocalanus sp.). They have usually represented the main component of zooplankton. The average number of copepods at the P1 Station during the study period of 2010 was 3,913 ind m-3(SD 2,572) and their number ranged from 1,184 ind m-3 (in winter) to 6,293 ind m-3(in spring). One year later, the average count of copepods was higher, at 11,723 ind m-3(SD 6,980), and it ranged from 2,351 ind m-3(in winter) to 18,307 ind m-3(in summer). Their average count at P2 Station in 2010 was 29,141 ind m-3, ranging from 3,330 ind m-3(in March) to 67,789 ind m-3(in May). The average count of copepods in 2011 was much lower at 17,883 ind m-3, and it ranged from 1,360 ind m-3 (in April) to 39,559 ind m-3 (in May). DISCUSSION: The environmental conditions of the pelagic habitat change in terms of both depth and distance from the shore. Although the qualitative (taxonomic) structure of zooplankton is almost identical to that of the coastal waters, the quantitative structure (abundance and biomass) changes quite significantly. The maximum values of zooplankton abundance and biomass were observed in the summer season, both in the Gdansk Deep and in the inner part of the Gulf of Gdansk. Copepods dominated in the composition of zooplankton for almost the entire time of the research duration. Quantitative composition of copepods at the P1 Station differed from the one at P2 Station due to the high abundance of Pseudocalanus sp. which prefers colder, more saline waters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...