Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Immunity ; 51(5): 856-870.e5, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31747582

RESUMEN

Naive CD8+ T cells differentiating into effector T cells increase glucose uptake and shift from quiescent to anabolic metabolism. Although much is known about the metabolism of cultured T cells, how T cells use nutrients during immune responses in vivo is less well defined. Here, we combined bioenergetic profiling and 13C-glucose infusion techniques to investigate the metabolism of CD8+ T cells responding to Listeria infection. In contrast to in vitro-activated T cells, which display hallmarks of Warburg metabolism, physiologically activated CD8+ T cells displayed greater rates of oxidative metabolism, higher bioenergetic capacity, differential use of pyruvate, and prominent flow of 13C-glucose carbon to anabolic pathways, including nucleotide and serine biosynthesis. Glucose-dependent serine biosynthesis mediated by the enzyme Phgdh was essential for CD8+ T cell expansion in vivo. Our data highlight fundamental differences in glucose use by pathogen-specific T cells in vivo, illustrating the impact of environment on T cell metabolic phenotypes.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Metabolismo Energético , Glucosa/metabolismo , Activación de Linfocitos/inmunología , Metaboloma , Metabolómica , Animales , Proliferación Celular , Cromatografía de Gases y Espectrometría de Masas , Glucólisis , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Activación de Linfocitos/genética , Metabolómica/métodos , Ratones , Estrés Oxidativo , Virosis/genética , Virosis/inmunología , Virosis/metabolismo , Virosis/virología
2.
EMBO Mol Med ; 10(7)2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29844217

RESUMEN

Activation of AMPK has been associated with pro-atrophic signaling in muscle. However, AMPK also has anti-inflammatory effects, suggesting that in cachexia, a syndrome of inflammatory-driven muscle wasting, AMPK activation could be beneficial. Here we show that the AMPK agonist AICAR suppresses IFNγ/TNFα-induced atrophy, while the mitochondrial inhibitor metformin does not. IFNγ/TNFα impair mitochondrial oxidative respiration in myotubes and promote a metabolic shift to aerobic glycolysis, similarly to metformin. In contrast, AICAR partially restored metabolic function. The effects of AICAR were prevented by the AMPK inhibitor Compound C and were reproduced with A-769662, a specific AMPK activator. AICAR and A-769662 co-treatment was found to be synergistic, suggesting that the anti-cachectic effects of these drugs are mediated through AMPK activation. AICAR spared muscle mass in mouse models of cancer and LPS induced atrophy. Together, our findings suggest a dual function for AMPK during inflammation-driven atrophy, wherein it can play a protective role when activated exogenously early in disease progression, but may contribute to anabolic suppression and atrophy when activated later through mitochondrial dysfunction and subsequent metabolic stress.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Caquexia/prevención & control , Metformina/uso terapéutico , Proteínas Quinasas/metabolismo , Ribonucleótidos/uso terapéutico , Quinasas de la Proteína-Quinasa Activada por el AMP , Aminoimidazol Carboxamida/uso terapéutico , Animales , Caquexia/etiología , Línea Celular , Activación Enzimática , Inflamación/complicaciones , Interferón gamma/antagonistas & inhibidores , Masculino , Ratones Endogámicos BALB C , Mitocondrias/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/enzimología , Neoplasias Experimentales/patología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Proteínas Quinasas/efectos de los fármacos , Choque Séptico/inducido químicamente , Choque Séptico/complicaciones , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
4.
Cell Metab ; 25(2): 345-357, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28111214

RESUMEN

During immune challenge, T lymphocytes engage pathways of anabolic metabolism to support clonal expansion and the development of effector functions. Here we report a critical role for the non-essential amino acid serine in effector T cell responses. Upon activation, T cells upregulate enzymes of the serine, glycine, one-carbon (SGOC) metabolic network, and rapidly increase processing of serine into one-carbon metabolism. We show that extracellular serine is required for optimal T cell expansion even in glucose concentrations sufficient to support T cell activation, bioenergetics, and effector function. Restricting dietary serine impairs pathogen-driven expansion of T cells in vivo, without affecting overall immune cell homeostasis. Mechanistically, serine supplies glycine and one-carbon units for de novo nucleotide biosynthesis in proliferating T cells, and one-carbon units from formate can rescue T cells from serine deprivation. Our data implicate serine as a key immunometabolite that directly modulates adaptive immunity by controlling T cell proliferative capacity.


Asunto(s)
Metaboloma , Serina/metabolismo , Linfocitos T/citología , Linfocitos T/metabolismo , Animales , Carbono/metabolismo , Puntos de Control del Ciclo Celular , Proliferación Celular , Dieta , Metabolismo Energético , Espacio Extracelular/metabolismo , Glicina , Listeria monocytogenes/inmunología , Redes y Vías Metabólicas , Ratones Endogámicos C57BL , Nucleótidos de Purina/biosíntesis
5.
Cell Metab ; 24(1): 158-66, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27374498

RESUMEN

Remodeling of the tricarboxylic acid (TCA) cycle is a metabolic adaptation accompanying inflammatory macrophage activation. During this process, endogenous metabolites can adopt regulatory roles that govern specific aspects of inflammatory response, as recently shown for succinate, which regulates the pro-inflammatory IL-1ß-HIF-1α axis. Itaconate is one of the most highly induced metabolites in activated macrophages, yet its functional significance remains unknown. Here, we show that itaconate modulates macrophage metabolism and effector functions by inhibiting succinate dehydrogenase-mediated oxidation of succinate. Through this action, itaconate exerts anti-inflammatory effects when administered in vitro and in vivo during macrophage activation and ischemia-reperfusion injury. Using newly generated Irg1(-/-) mice, which lack the ability to produce itaconate, we show that endogenous itaconate regulates succinate levels and function, mitochondrial respiration, and inflammatory cytokine production during macrophage activation. These studies highlight itaconate as a major physiological regulator of the global metabolic rewiring and effector functions of inflammatory macrophages.


Asunto(s)
Inflamación/enzimología , Inflamación/patología , Macrófagos/metabolismo , Succinato Deshidrogenasa/antagonistas & inhibidores , Succinatos/farmacología , Animales , Respiración de la Célula/efectos de los fármacos , Femenino , Lipopolisacáridos/farmacología , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/enzimología , Macrófagos/patología , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/enzimología , Daño por Reperfusión/patología , Succinato Deshidrogenasa/metabolismo , Ácido Succínico/metabolismo
6.
PLoS Biol ; 13(12): e1002309, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26625127

RESUMEN

Metformin is a biguanide widely prescribed to treat Type II diabetes that has gained interest as an antineoplastic agent. Recent work suggests that metformin directly antagonizes cancer cell growth through its actions on complex I of the mitochondrial electron transport chain (ETC). However, the mechanisms by which metformin arrests cancer cell proliferation remain poorly defined. Here we demonstrate that the metabolic checkpoint kinases AMP-activated protein kinase (AMPK) and LKB1 are not required for the antiproliferative effects of metformin. Rather, metformin inhibits cancer cell proliferation by suppressing mitochondrial-dependent biosynthetic activity. We show that in vitro metformin decreases the flow of glucose- and glutamine-derived metabolic intermediates into the Tricarboxylic Acid (TCA) cycle, leading to reduced citrate production and de novo lipid biosynthesis. Tumor cells lacking functional mitochondria maintain lipid biosynthesis in the presence of metformin via glutamine-dependent reductive carboxylation, and display reduced sensitivity to metformin-induced proliferative arrest. Our data indicate that metformin inhibits cancer cell proliferation by suppressing the production of mitochondrial-dependent metabolic intermediates required for cell growth, and that metabolic adaptations that bypass mitochondrial-dependent biosynthesis may provide a mechanism of tumor cell resistance to biguanide activity.


Asunto(s)
Antineoplásicos/farmacología , Ciclo del Ácido Cítrico/efectos de los fármacos , Hipoglucemiantes/farmacología , Metformina/farmacología , Mitocondrias/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Resistencia a Antineoplásicos , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Embrión de Mamíferos/citología , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/patología , Mutación , Neoplasias/metabolismo , Neoplasias/patología , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
7.
Mol Cell ; 60(2): 195-207, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26474064

RESUMEN

Cancer cells adapt metabolically to proliferate under nutrient limitation. Here we used combined transcriptional-metabolomic network analysis to identify metabolic pathways that support glucose-independent tumor cell proliferation. We found that glucose deprivation stimulated re-wiring of the tricarboxylic acid (TCA) cycle and early steps of gluconeogenesis to promote glucose-independent cell proliferation. Glucose limitation promoted the production of phosphoenolpyruvate (PEP) from glutamine via the activity of mitochondrial PEP-carboxykinase (PCK2). Under these conditions, glutamine-derived PEP was used to fuel biosynthetic pathways normally sustained by glucose, including serine and purine biosynthesis. PCK2 expression was required to maintain tumor cell proliferation under limited-glucose conditions in vitro and tumor growth in vivo. Elevated PCK2 expression is observed in several human tumor types and enriched in tumor tissue from non-small-cell lung cancer (NSCLC) patients. Our results define a role for PCK2 in cancer cell metabolic reprogramming that promotes glucose-independent cell growth and metabolic stress resistance in human tumors.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Regulación Neoplásica de la Expresión Génica , Gluconeogénesis/genética , Neoplasias Pulmonares/metabolismo , Neoplasias/metabolismo , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Adaptación Fisiológica/genética , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular , Ciclo del Ácido Cítrico/genética , Glucosa/deficiencia , Glutamina/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Metabolómica , Ratones , Ratones Desnudos , Mitocondrias/metabolismo , Neoplasias/genética , Neoplasias/patología , Fosfoenolpiruvato/metabolismo , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Purinas/biosíntesis , Ácido Pirúvico/metabolismo , Serina/biosíntesis
8.
Proc Natl Acad Sci U S A ; 111(7): 2554-9, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24550282

RESUMEN

One of the major metabolic changes associated with cellular transformation is enhanced nutrient utilization, which supports tumor progression by fueling both energy production and providing biosynthetic intermediates for growth. The liver kinase B1 (LKB1) is a serine/threonine kinase and tumor suppressor that couples bioenergetics to cell-growth control through regulation of mammalian target of rapamycin (mTOR) activity; however, the influence of LKB1 on tumor metabolism is not well defined. Here, we show that loss of LKB1 induces a progrowth metabolic program in proliferating cells. Cells lacking LKB1 display increased glucose and glutamine uptake and utilization, which support both cellular ATP levels and increased macromolecular biosynthesis. This LKB1-dependent reprogramming of cell metabolism is dependent on the hypoxia-inducible factor-1α (HIF-1α), which accumulates under normoxia in LKB1-deficient cells and is antagonized by inhibition of mTOR complex I signaling. Silencing HIF-1α reverses the metabolic advantages conferred by reduced LKB1 signaling and impairs the growth and survival of LKB1-deficient tumor cells under low-nutrient conditions. Together, our data implicate the tumor suppressor LKB1 as a central regulator of tumor metabolism and growth control through the regulation of HIF-1α-dependent metabolic reprogramming.


Asunto(s)
Metabolismo Energético/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Redes y Vías Metabólicas/genética , Proteínas Serina-Treonina Quinasas/deficiencia , Quinasas de la Proteína-Quinasa Activada por el AMP , Adenosina Trifosfato/metabolismo , Análisis de Varianza , Animales , Apoptosis/fisiología , Western Blotting , Línea Celular Tumoral , Proliferación Celular , Fibroblastos , Cromatografía de Gases y Espectrometría de Masas , Glucosa/metabolismo , Glutamina/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Redes y Vías Metabólicas/fisiología , Ratones , Complejos Multiproteicos/metabolismo , Consumo de Oxígeno/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
9.
Cancer Metab ; 1(1): 18, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-24280377

RESUMEN

BACKGROUND: Germline and somatic mutations in STK11, the gene encoding the serine/threonine kinase LKB1, are strongly associated with tumorigenesis. While loss of LKB1 expression has been linked to breast cancer, the mechanistic role of LKB1 in regulating breast cancer development, metastasis, and tumor metabolism has remained unclear. METHODS: We have generated and analyzed transgenic mice expressing ErbB2 in the mammary epithelium of LKB1 wild-type or LKB1-deficient mice. We have also utilized ErbB2-expressing breast cancer cells in which LKB1 levels have been reduced using shRNA approaches. These transgenic and xenograft models were characterized for the effects of LKB1 loss on tumor initiation, growth, metastasis and tumor cell metabolism. RESULTS: We demonstrate that loss of LKB1 promotes tumor initiation and induces a characteristic shift to aerobic glycolysis ('Warburg effect') in a model of ErbB2-mediated breast cancer. LKB1-deficient breast cancer cells display enhanced early tumor growth coupled with increased cell migratory and invasive properties in vitro. We show that ErbB2-positive tumors deficient for LKB1 display a pro-growth molecular and phenotypic signature characterized by elevated Akt/mTOR signaling, increased glycolytic metabolism, as well as increased bioenergetic markers both in vitro and in vivo. We also demonstrate that mTOR contributes to the metabolic reprogramming of LKB1-deficient breast cancer, and is required to drive glycolytic metabolism in these tumors; however, LKB1-deficient breast cancer cells display reduced metabolic flexibility and increased apoptosis in response to metabolic perturbations. CONCLUSIONS: Together, our data suggest that LKB1 functions as a tumor suppressor in breast cancer. Loss of LKB1 collaborates with activated ErbB2 signaling to drive breast tumorigenesis and pro-growth metabolism in the resulting tumors.

10.
Cell Metab ; 17(1): 113-24, 2013 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-23274086

RESUMEN

AMPK is a metabolic sensor that helps maintain cellular energy homeostasis. Despite evidence linking AMPK with tumor suppressor functions, the role of AMPK in tumorigenesis and tumor metabolism is unknown. Here we show that AMPK negatively regulates aerobic glycolysis (the Warburg effect) in cancer cells and suppresses tumor growth in vivo. Genetic ablation of the α1 catalytic subunit of AMPK accelerates Myc-induced lymphomagenesis. Inactivation of AMPKα in both transformed and nontransformed cells promotes a metabolic shift to aerobic glycolysis, increased allocation of glucose carbon into lipids, and biomass accumulation. These metabolic effects require normoxic stabilization of the hypoxia-inducible factor-1α (HIF-1α), as silencing HIF-1α reverses the shift to aerobic glycolysis and the biosynthetic and proliferative advantages conferred by reduced AMPKα signaling. Together our findings suggest that AMPK activity opposes tumor development and that its loss fosters tumor progression in part by regulating cellular metabolic pathways that support cell growth and proliferation.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/genética , Animales , Linfocitos B/metabolismo , Línea Celular , Glucólisis , Células HCT116 , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Estimación de Kaplan-Meier , Ratones , Ratones Transgénicos , Neoplasias/metabolismo , Neoplasias/mortalidad , Neoplasias/patología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transducción de Señal
11.
J Immunol ; 187(8): 4187-98, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21930968

RESUMEN

T cell activation leads to engagement of cellular metabolic pathways necessary to support cell proliferation and function. However, our understanding of the signal transduction pathways that regulate metabolism and their impact on T cell function remains limited. The liver kinase B1 (LKB1) is a serine/threonine kinase that links cellular metabolism with cell growth and proliferation. In this study, we demonstrate that LKB1 is a critical regulator of T cell development, viability, activation, and metabolism. T cell-specific ablation of the gene that encodes LKB1 resulted in blocked thymocyte development and a reduction in peripheral T cells. LKB1-deficient T cells exhibited defects in cell proliferation and viability and altered glycolytic and lipid metabolism. Interestingly, loss of LKB1 promoted increased T cell activation and inflammatory cytokine production by both CD4(+) and CD8(+) T cells. Activation of the AMP-activated protein kinase (AMPK) was decreased in LKB1-deficient T cells. AMPK was found to mediate a subset of LKB1 functions in T lymphocytes, as mice lacking the α1 subunit of AMPK displayed similar defects in T cell activation, metabolism, and inflammatory cytokine production, but normal T cell development and peripheral T cell homeostasis. LKB1- and AMPKα1-deficient T cells each displayed elevated mammalian target of rapamycin complex 1 signaling and IFN-γ production that could be reversed by rapamycin treatment. Our data highlight a central role for LKB1 in T cell activation, viability, and metabolism and suggest that LKB1-AMPK signaling negatively regulates T cell effector function through regulation of mammalian target of rapamycin activity.


Asunto(s)
Diferenciación Celular/inmunología , Activación de Linfocitos/inmunología , Proteínas Serina-Treonina Quinasas/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Proteínas Quinasas Activadas por AMP , Animales , Proliferación Celular , Separación Celular , Supervivencia Celular/inmunología , Citometría de Flujo , Homeostasis/inmunología , Immunoblotting , Ratones , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/inmunología , Linfocitos T/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA