Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Cell Biol ; 22(9): 1103-1115, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32839548

RESUMEN

Plasticity of cancer invasion and metastasis depends on the ability of cancer cells to switch between collective and single-cell dissemination, controlled by cadherin-mediated cell-cell junctions. In clinical samples, E-cadherin-expressing and -deficient tumours both invade collectively and metastasize equally, implicating additional mechanisms controlling cell-cell cooperation and individualization. Here, using spatially defined organotypic culture, intravital microscopy of mammary tumours in mice and in silico modelling, we identify cell density regulation by three-dimensional tissue boundaries to physically control collective movement irrespective of the composition and stability of cell-cell junctions. Deregulation of adherens junctions by downregulation of E-cadherin and p120-catenin resulted in a transition from coordinated to uncoordinated collective movement along extracellular boundaries, whereas single-cell escape depended on locally free tissue space. These results indicate that cadherins and extracellular matrix confinement cooperate to determine unjamming transitions and stepwise epithelial fluidization towards, ultimately, cell individualization.


Asunto(s)
Neoplasias de la Mama/patología , Adhesión Celular/fisiología , Invasividad Neoplásica/patología , Uniones Adherentes/patología , Animales , Línea Celular , Línea Celular Tumoral , Regulación hacia Abajo/fisiología , Femenino , Regulación Neoplásica de la Expresión Génica/fisiología , Células HEK293 , Humanos , Uniones Intercelulares/patología , Células MCF-7 , Ratones Endogámicos BALB C
2.
Nat Cell Biol ; 22(1): 97-107, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31907411

RESUMEN

Diffuse brain infiltration by glioma cells causes detrimental disease progression, but its multicellular coordination is poorly understood. We show here that glioma cells infiltrate the brain collectively as multicellular networks. Contacts between moving glioma cells are adaptive epithelial-like or filamentous junctions stabilized by N-cadherin, ß-catenin and p120-catenin, which undergo kinetic turnover, transmit intercellular calcium transients and mediate directional persistence. Downregulation of p120-catenin compromises cell-cell interaction and communication, disrupts collective networks, and both the cadherin and RhoA binding domains of p120-catenin are required for network formation and migration. Deregulating p120-catenin further prevents diffuse glioma cell infiltration of the mouse brain with marginalized microlesions as the outcome. Transcriptomics analysis has identified p120-catenin as an upstream regulator of neurogenesis and cell cycle pathways and a predictor of poor clinical outcome in glioma patients. Collective glioma networks infiltrating the brain thus depend on adherens junctions dynamics, the targeting of which may offer an unanticipated strategy to halt glioma progression.


Asunto(s)
Uniones Adherentes/metabolismo , Cateninas/metabolismo , Adhesión Celular/fisiología , Glioma/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Cadherinas/metabolismo , Línea Celular Tumoral , Regulación hacia Abajo/fisiología , Glioma/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Catenina delta
3.
Dis Model Mech ; 11(9)2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-29997220

RESUMEN

Cancer invasion programs are adaptive by switching between metastatic collective and single-cell dissemination; however, current intravital microscopy models for epithelial cancer in mice fail to reliably recreate such invasion plasticity. Using microimplantation of breast cancer spheroids into the murine mammary fat pad and live-cell monitoring, we show microenvironmental conditions and cytoskeletal adaptation during collective to single-cell transition in vivo E-cadherin-expressing 4T1 and E-cadherin-negative MMT tumors both initiated collective invasion along stromal structures, reflecting invasion patterns in 3D organotypic culture and human primary ductal and lobular carcinoma. Collectively invading cells developed weakly oscillatory actin dynamics, yet provided zones for single-cell transitions with accentuated, more chaotic actin fluctuations. This identifies collective invasion in vivo as a dynamic niche and efficient source for single-cell release.


Asunto(s)
Plasticidad de la Célula , Microscopía Intravital , Neoplasias Mamarias Animales/diagnóstico por imagen , Neoplasias Mamarias Animales/patología , Actinas/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Femenino , Células HEK293 , Humanos , Imagenología Tridimensional , Neoplasias Mamarias Animales/irrigación sanguínea , Ratones Endogámicos BALB C , Invasividad Neoplásica , Metástasis de la Neoplasia , Neovascularización Patológica/patología , Células del Estroma/patología
4.
J Cell Sci ; 131(15)2018 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-29991514

RESUMEN

Diffuse brain invasion by glioma cells prevents effective surgical or molecular-targeted therapy and underlies a detrimental outcome. Migrating glioma cells are guided by complex anatomical brain structures but the exact mechanisms remain poorly defined. To identify adhesion receptor systems and matrix structures supporting glioma cell invasion into brain-like environments we used 2D and 3D organotypic invasion assays in combination with antibody-, peptide- and RNA-based interference. Combined interference with ß1 and αV integrins abolished the migration of U-251 and E-98 glioma cells on reconstituted basement membrane; however, invasion into primary brain slices or 3D astrocyte-based scaffolds and migration on astrocyte-deposited matrix was only partly inhibited. Any residual invasion was supported by vascular structures, as well as laminin 511, a central constituent of basement membrane of brain blood vessels. Multi-targeted interference against ß1, αV and α6 integrins expressed by U-251 and E-98 cells proved insufficient to achieve complete migration arrest. These data suggest that mechanocoupling by integrins is relatively resistant to antibody- or peptide-based targeting, and cooperates with additional, as yet unidentified adhesion systems in mediating glioma cell invasion in complex brain stroma.


Asunto(s)
Glioma/metabolismo , Animales , Astrocitos/citología , Astrocitos/metabolismo , Membrana Basal/metabolismo , Línea Celular Tumoral , Movimiento Celular/fisiología , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Glioma/patología , Técnicas In Vitro , Integrina alfa3/metabolismo , Integrinas/metabolismo , Laminina/metabolismo , Espectrometría de Masas , Ratones
5.
Clin Exp Metastasis ; 34(6-7): 421-429, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28894989

RESUMEN

Breast cancer undergoes collective tissue invasion and, in experimental models, can collectively metastasize. The prevalence of collective invasion and its contribution to distant metastasis in clinical disease, however, remains poorly defined. We here scored the adipose tissue invasion of primary invasive ductal carcinoma (IDC), expressing E-cadherin, and E-cadherin negative invasive lobular carcinoma (ILC) and identified predominantly collective invasion patterns (86/86 samples) in both carcinoma types. Whereas collective invasion in IDC lesions retained adherens junctions, multicellular clusters and "Indian files" in ILC, despite the absence of adherens junctions (AJ) proteins E-cadherin and ß-catenin, retained CD44 at cell-cell contacts. By histomorphological scoring and semi-automated image analysis, we show that the extent of collective invasion into the adipose tissue correlated with decreased distant metastasis-free survival (5-year follow-up; hazard ratio: 2.32 and 2.29, respectively). Thus, collective invasion represents the predominant invasion mode in breast cancer, develops distinct junctional subtypes in IDC and ILC, and associates with distant metastasis, suggesting a critical role in systemic dissemination.


Asunto(s)
Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/patología , Carcinoma Lobular/patología , Invasividad Neoplásica/patología , Adulto , Anciano , Neoplasias de la Mama/mortalidad , Carcinoma Ductal de Mama/mortalidad , Carcinoma Lobular/mortalidad , Supervivencia sin Enfermedad , Femenino , Humanos , Estimación de Kaplan-Meier , Persona de Mediana Edad
6.
J Pathol ; 226(2): 185-99, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22006671

RESUMEN

Cancer cell invasion into healthy tissues develops preferentially along pre-existing tracks of least resistance, followed by secondary tissue remodelling and destruction. The tissue scaffolds supporting or preventing guidance of invasion vary in structure and molecular composition between organs. In the brain, the guidance is provided by myelinated axons, astrocyte processes, and blood vessels which are used as invasion routes by glioma cells. In the human breast, containing interstitial collagen-rich connective tissue, disseminating breast cancer cells preferentially invade along bundled collagen fibrils and the surface of adipocytes. In both invasion types, physical guidance prompted by interfaces and space is complemented by molecular guidance. Generic mechanisms shared by most, if not all, tissues include (i) guidance by integrins towards fibrillar interstitial collagen and/or laminins and type IV collagen in basement membranes decorating vessels and adipocytes, and, likely, CD44 engaging with hyaluronan; (ii) haptotactic guidance by chemokines and growth factors; and likely (iii) physical pushing mechanisms. Tissue-specific, resticted guidance cues include ECM proteins with restricted expression (tenascins, lecticans), cell-cell interfaces, and newly secreted matrix molecules decorating ECM fibres (laminin-332, thrombospondin-1, osteopontin, periostin). We here review physical and molecular guidance mechanisms in interstitial tissue and brain parenchyma and explore shared principles and organ-specific differences, and their implications for experimental model design and therapeutic targeting of tumour cell invasion.


Asunto(s)
Neoplasias Encefálicas/patología , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/patología , Glioma/patología , Tejido Adiposo/patología , Vasos Sanguíneos/patología , Cadherinas/fisiología , Moléculas de Adhesión Celular/fisiología , Movimiento Celular/fisiología , Colágeno/fisiología , Distroglicanos/fisiología , Matriz Extracelular/patología , Femenino , Humanos , Receptores de Hialuranos/fisiología , Inmunoglobulina G/fisiología , Integrinas/fisiología , Glándulas Mamarias Humanas/patología , Invasividad Neoplásica/patología , Fibras Nerviosas Mielínicas/patología , Receptores de Superficie Celular/fisiología , Sindecanos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...