Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 8(1): 11847, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30087403

RESUMEN

Abnormal hippocampal neural plasticity has been implicated in behavioural abnormalities and complex neuropsychiatric conditions, including bipolar disorder (BD). However, the determinants of this neural alteration remain unknown. This work tests the hypothesis that the neurotransmitter serotonin (5-HT) is a key determinant of hippocampal neuroplasticity, and its absence leads to maladaptive behaviour relevant for BD. Depletion of brain 5-HT in Tph2 mutant mice resulted in reduced behavioural despair, reduced anxiety, marked aggression and lower habituation in novel environments, reminiscent of bipolar-associated manic behaviour. Treatment with valproate produced a substantial improvement of the mania-like behavioural phenotypes displayed by Tph2 mutants. Brain-wide fMRI mapping in mutants revealed functional hippocampal hyperactivity in which we also observed dramatically increased neuroplasticity. Importantly, remarkable correspondence between the transcriptomic profile of the Tph2 mutant hippocampus and neurons from bipolar disorder patients was observed. Chronic stress reversed the emotional phenotype and the hippocampal transcriptional landscape of Tph2 mutants. These changes were associated with inappropriate activation of transcriptional adaptive response to stress as assessed by gene set enrichment analyses in the hippocampus of Tph2 mutant mice. These findings delineate 5-HT as a critical determinant in BD associated maladaptive emotional responses and aberrant hippocampal neuroplasticity, and support the use of Tph2-/- mice as a new research tool for mechanistic and therapeutic research in bipolar disorder.


Asunto(s)
Trastorno Bipolar/prevención & control , Hipocampo/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Serotonina/metabolismo , Triptófano Hidroxilasa/metabolismo , Ácido Valproico/farmacología , Animales , Anticonvulsivantes/farmacología , Ansiedad/genética , Ansiedad/fisiopatología , Ansiedad/prevención & control , Trastorno Bipolar/genética , Trastorno Bipolar/fisiopatología , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Perfilación de la Expresión Génica/métodos , Hipocampo/metabolismo , Hipocampo/fisiopatología , Imagen por Resonancia Magnética/métodos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Plasticidad Neuronal/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Triptófano Hidroxilasa/genética
2.
Neuron ; 98(4): 801-816.e7, 2018 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-29706583

RESUMEN

Monoaminergic modulation of cortical and thalamic inputs to the dorsal striatum (DS) is crucial for reward-based learning and action control. While dopamine has been extensively investigated in this context, the synaptic effects of serotonin (5-HT) have been largely unexplored. Here, we investigated how serotonergic signaling affects associative plasticity at glutamatergic synapses on the striatal projection neurons of the direct pathway (dSPNs). Combining chemogenetic and optogenetic approaches reveals that impeding serotonergic signaling preferentially gates spike-timing-dependent long-term depression (t-LTD) at thalamostriatal synapses. This t-LTD requires dampened activity of the 5-HT4 receptor subtype, which we demonstrate controls dendritic Ca2+ signals by regulating BK channel activity, and which preferentially localizes at the dendritic shaft. The synaptic effects of 5-HT signaling at thalamostriatal inputs provide insights into how changes in serotonergic levels associated with behavioral states or pathology affect striatal-dependent processes.


Asunto(s)
Cuerpo Estriado/metabolismo , Plasticidad Neuronal/genética , Receptores de Serotonina 5-HT4/genética , Serotonina/metabolismo , Tálamo/metabolismo , Animales , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/genética , Cuerpo Estriado/citología , Cuerpo Estriado/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Indoles/farmacología , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Depresión Sináptica a Largo Plazo , Ratones , Ratones Transgénicos , Vías Nerviosas , Plasticidad Neuronal/efectos de los fármacos , Optogenética , Piperidinas/farmacología , Propano/análogos & derivados , Propano/farmacología , Antagonistas del Receptor de Serotonina 5-HT4/farmacología , Sulfonamidas/farmacología , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Tálamo/citología , Tálamo/efectos de los fármacos
3.
Brain ; 141(7): 2055-2065, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29722793

RESUMEN

Human genetic studies are rapidly identifying variants that increase risk for neurodevelopmental disorders. However, it remains unclear how specific mutations impact brain function and contribute to neuropsychiatric risk. Chromosome 16p11.2 deletion is one of the most common copy number variations in autism and related neurodevelopmental disorders. Using resting state functional MRI data from the Simons Variation in Individuals Project (VIP) database, we show that 16p11.2 deletion carriers exhibit impaired prefrontal connectivity, resulting in weaker long-range functional coupling with temporal-parietal regions. These functional changes are associated with socio-cognitive impairments. We also document that a mouse with the same genetic deficiency exhibits similarly diminished prefrontal connectivity, together with thalamo-prefrontal miswiring and reduced long-range functional synchronization. These results reveal a mechanistic link between specific genetic risk for neurodevelopmental disorders and long-range functional coupling, and suggest that deletion in 16p11.2 may lead to impaired socio-cognitive function via dysregulation of prefrontal connectivity.


Asunto(s)
Trastorno Autístico/genética , Trastornos de los Cromosomas/genética , Discapacidad Intelectual/genética , Red Nerviosa/fisiología , Adolescente , Animales , Trastorno Autístico/fisiopatología , Trastorno Autístico/psicología , Niño , Deleción Cromosómica , Trastornos de los Cromosomas/fisiopatología , Cromosomas Humanos Par 16/genética , Cognición/fisiología , Disfunción Cognitiva/complicaciones , Variaciones en el Número de Copia de ADN , Modelos Animales de Enfermedad , Femenino , Humanos , Discapacidad Intelectual/fisiopatología , Imagen por Resonancia Magnética/métodos , Masculino , Potenciales de la Membrana/genética , Potenciales de la Membrana/fisiología , Ratones , Ratones Noqueados , Trastornos del Neurodesarrollo/genética , Corteza Prefrontal/fisiología , Lóbulo Temporal/fisiopatología
4.
Cell Rep ; 21(4): 910-918, 2017 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-29069598

RESUMEN

Serotonin-producing neurons profusely innervate brain regions via long-range projections. However, it remains unclear whether and how endogenous serotonergic transmission specifically influences regional or global functional activity. We combined designed receptors exclusively activated by designed drugs (DREADD)-based chemogenetics and functional magnetic resonance imaging (fMRI), an approach we term "chemo-fMRI," to causally probe the brain-wide substrates modulated by endogenous serotonergic activity. We describe the generation of a conditional knockin mouse line that, crossed with serotonin-specific Cre-recombinase mice, allowed us to remotely stimulate serotonergic neurons during fMRI scans. We show that endogenous stimulation of serotonin-producing neurons does not affect global brain activity but results in region-specific activation of a set of primary target regions encompassing corticohippocampal and ventrostriatal areas. By contrast, pharmacological boosting of serotonin levels produced widespread fMRI deactivation, plausibly reflecting the mixed contribution of central and perivascular constrictive effects. Our results identify the primary functional targets of endogenous serotonergic stimulation and establish causation between activation of serotonergic neurons and regional fMRI signals.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiología , Imagen por Resonancia Magnética/métodos , Neuronas Serotoninérgicas/fisiología , Transmisión Sináptica , Animales , Encéfalo/citología , Encéfalo/diagnóstico por imagen , Ratones , Ratones Endogámicos C57BL , Neuronas Serotoninérgicas/efectos de los fármacos , Neuronas Serotoninérgicas/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/farmacocinética , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología
5.
Cell Rep ; 13(7): 1353-1365, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26549453

RESUMEN

The basal ganglia play a critical role in shaping motor behavior. For this function, the activity of medium spiny neurons (MSNs) of the striatonigral and striatopallidal pathways must be integrated. It remains unclear whether the activity of the two pathways is primarily coordinated by synaptic plasticity mechanisms. Using a model of Parkinson's disease, we determined the circuit and behavioral effects of concurrently regulating cell-type-specific forms of corticostriatal long-term synaptic depression (LTD) by inhibiting small-conductance Ca(2+)-activated K(+) channels (SKs) of the dorsolateral striatum. At striatopallidal synapses, SK channel inhibition rescued the disease-linked deficits in endocannabinoid (eCB)-dependent LTD. At striatonigral cells, inhibition of these channels counteracted a form of adenosine-mediated LTD by activating the ERK cascade. Interfering with eCB-, adenosine-, and ERK signaling in vivo alleviated motor abnormalities, which supports that synaptic modulation of striatal pathways affects behavior. Thus, our results establish a central role of coordinated synaptic plasticity at MSN subpopulations in motor control.


Asunto(s)
Cuerpo Estriado/patología , Plasticidad Neuronal , Sustancia Negra/patología , Adenosina/fisiología , Animales , Corteza Cerebral/citología , Corteza Cerebral/patología , Dopamina/fisiología , Neuronas Dopaminérgicas/fisiología , Potenciales Postsinápticos Excitadores , Depresión Sináptica a Largo Plazo , Sistema de Señalización de MAP Quinasas , Ratones , Actividad Motora , Enfermedad de Parkinson Secundaria/inducido químicamente , Enfermedad de Parkinson Secundaria/patología , Receptor de Adenosina A1/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo
6.
Oncotarget ; 5(22): 11252-68, 2014 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-25361004

RESUMEN

Epidemiological and preclinical studies propose that metformin, a first-line drug for type-2 diabetes, exerts direct antitumor activity. Although several clinical trials are ongoing, the molecular mechanisms of this effect are unknown. Here we show that chloride intracellular channel-1 (CLIC1) is a direct target of metformin in human glioblastoma cells. Metformin exposure induces antiproliferative effects in cancer stem cell-enriched cultures, isolated from three individual WHO grade IV human glioblastomas. These effects phenocopy metformin-mediated inhibition of a chloride current specifically dependent on CLIC1 functional activity. CLIC1 ion channel is preferentially active during the G1-S transition via transient membrane insertion. Metformin inhibition of CLIC1 activity induces G1 arrest of glioblastoma stem cells. This effect was time-dependent, and prolonged treatments caused antiproliferative effects also for low, clinically significant, metformin concentrations. Furthermore, substitution of Arg29 in the putative CLIC1 pore region impairs metformin modulation of channel activity. The lack of drugs affecting cancer stem cell viability is the main cause of therapy failure and tumor relapse. We identified CLIC1 not only as a modulator of cell cycle progression in human glioblastoma stem cells but also as the main target of metformin's antiproliferative activity, paving the way for novel and needed pharmacological approaches to glioblastoma treatment.


Asunto(s)
Canales de Cloruro/antagonistas & inhibidores , Glioblastoma/tratamiento farmacológico , Metformina/farmacología , Células Madre Neoplásicas/efectos de los fármacos , Anciano , Animales , Antineoplásicos/farmacología , Células CHO , Canales de Cloruro/metabolismo , Cricetulus , Reposicionamiento de Medicamentos , Femenino , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Hipoglucemiantes/farmacología , Masculino , Persona de Mediana Edad , Modelos Moleculares , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología
7.
J Neurochem ; 131(4): 444-56, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25060644

RESUMEN

During neuronal differentiation, axonal elongation is regulated by both external and intrinsic stimuli, including neurotropic factors, cytoskeleton dynamics, second messengers such as cyclic adenosine monophosphate (cAMP), and neuronal excitability. Chloride intracellular channel 1 (CLIC1) is a cytoplasmic hydrophilic protein that, upon stimulation, dimerizes and translocates to the plasma membrane, where it contributes to increase the membrane chloride conductance. Here, we investigated the expression of CLIC1 in primary hippocampal neurons and retinal ganglion cells (RGCs) and examined how the functional expression of CLIC1 specifically modulates neurite outgrowth of neonatal murine RGCs. Using a combination of electrophysiology and immunohistochemistry, we found that CLIC1 is expressed in hippocampal neurons and RGCs and that the chloride current mediated by CLIC1 is required for maintaining growth cone morphology and sustaining cAMP-stimulated neurite elongation in dissociated immunopurified RGCs. In cultured RGCs, inhibition of CLIC1 ionic current through the pharmacological blocker IAA94 or a specific anti-CLIC1 antibody directed against its extracellular domain prevents the neurite outgrowth induced by cAMP. CLIC1-mediated chloride current, which results from an increased open probability of the channel, is detected only when cAMP is elevated. Inhibition of protein kinase A prevents such current. These results indicate that CLIC1 functional expression is regulated by cAMP via protein kinase A and is required for neurite outgrowth modulation during neuronal differentiation. Using a combination of electrophysiology and immunohistochemistry, we found that the chloride intracellular channel 1 (CLIC1) protein modulates the speed of neurite growth. The chloride current mediated by CLIC1 is essential for maintaining growth cone morphology and is required for sustaining cAMP-stimulated neurite elongation in dissociated immunopurified neurons. The presence of either the CLIC1 current blocker IAA94 or the anti-CLIC1 antibody inhibits neurite growth of Retina Ganglion Cells cultured in the presence of 10 micromolar forskolin for 24 h.


Asunto(s)
Canales de Cloruro/metabolismo , AMP Cíclico/farmacología , Neuritas/efectos de los fármacos , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/efectos de los fármacos , 8-Bromo Monofosfato de Adenosina Cíclica/farmacología , Animales , Animales Recién Nacidos , Anticuerpos/farmacología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Canales de Cloruro/inmunología , Colforsina/farmacología , Inhibidores Enzimáticos/farmacología , Glicolatos/farmacología , Hipocampo/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Microscopía por Video , Técnicas de Placa-Clamp , Retina/citología
8.
FASEB J ; 28(9): 3906-18, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24858279

RESUMEN

The architecture and structural mechanics of the cell nucleus are defined by the nuclear lamina, which is formed by A- and B-type lamins. Recently, gene duplication and protein overexpression of lamin B1 (LB1) have been reported in pedigrees with autosomal dominant leukodystrophy (ADLD). However, how the overexpression of LB1 affects nuclear mechanics and function and how it may result in pathology remain unexplored. Here, we report that in primary human skin fibroblasts derived from ADLD patients, LB1, but not other lamins, is overexpressed at the nuclear lamina and specifically enhances nuclear stiffness. Transient transfection of LB1 in HEK293 and neuronal N2a cells mimics the mechanical phenotype of ADLD nuclei. Notably, in ADLD fibroblasts, reducing LB1 protein levels by shRNA knockdown restores elasticity values to those indistinguishable from control fibroblasts. Moreover, isolated nuclei from ADLD fibroblasts display a reduced nuclear ion channel open probability on voltage-step application, suggesting that biophysical changes induced by LB1 overexpression may alter nuclear signaling cascades in somatic cells. Overall, the overexpression of LB1 in ADLD cells alters nuclear mechanics and is linked to changes in nuclear signaling, which could help explain the pathogenesis of this disease.


Asunto(s)
Núcleo Celular/patología , Embrión de Mamíferos/citología , Fibroblastos/patología , Lamina Tipo B/metabolismo , Enfermedad de Pelizaeus-Merzbacher/patología , Piel/citología , Adulto , Animales , Western Blotting , Estudios de Casos y Controles , Permeabilidad de la Membrana Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proliferación Celular , Células Cultivadas , Embrión de Mamíferos/metabolismo , Femenino , Fibroblastos/metabolismo , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Lamina Tipo B/antagonistas & inhibidores , Lamina Tipo B/genética , Masculino , Ratones , Persona de Mediana Edad , Técnicas de Placa-Clamp , Enfermedad de Pelizaeus-Merzbacher/genética , Enfermedad de Pelizaeus-Merzbacher/metabolismo , Fenotipo , ARN Interferente Pequeño/genética , Piel/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA