Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioprocess Biosyst Eng ; 42(6): 1039-1051, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30887102

RESUMEN

Preparative protein precipitation is known as a cost-efficient and easy-to-use alternative to chromatographic purification steps. This said, at the moment, there is no process for monoclonal antibodies (mAb) on the market, although especially polyethylene glycol-induced precipitation has shown great potential. One reason might be the highly complex behavior of each component of a crude feedstock during the precipitation process. For different investigated mAbs, significant variations in the host cell protein (HCP) reduction are observed. In contrast to the precipitation behavior of single components, the interactions and interplay in a complex feedstock are not fully understood yet. This work discusses the influence of contaminants on the precipitation behavior of two different mAbs, an IgG1, and an IgG2. By spiking the mAbs with mock solution, a complex feedstock could successfully be mimicked. Spiking contaminants influenced the yield and purity of the mAbs after the precipitation step, compared to the precipitation behavior of the single components. The mixture showed a decrease in the contaminant and mAb solubility. By re-buffering the mock solution prior to spiking, special salts, small molecules like amino acids, vitamins, or sugars could be depleted while larger ones like HCP or DNA were still present. Therefore, it was possible to distinguish the influence of small molecules and larger ones. Hence, mAb-macromolecular interaction could be identified as a possible reason for the observed higher precipitation propensity, while small molecules of the cell culture medium were identified as solubilisation factors during the precipitation process.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/aislamiento & purificación , Precipitación Fraccionada , Animales , Células CHO , Cricetinae , Cricetulus , Solubilidad
2.
Bioprocess Biosyst Eng ; 42(4): 513-520, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30535587

RESUMEN

For the purification of biopharmaceutical proteins, liquid chromatography is still the gold standard. Especially with increasing product titers, drawbacks like slow volumetric throughput and high resin costs lead to an intensifying need for alternative technologies. Selective preparative protein precipitation is one promising alternative technique. Although the capability has been proven, there has been no precipitation process realized for large-scale monoclonal antibody (mAb) production yet. One reason might be that the mechanism behind protein phase behavior is not completely understood and the precipitation process development is still empirical. Mechanistic modeling can be a means for faster, material-saving process development and a better process understanding at the same time. In preparative chromatography, mechanistic modeling was successfully shown for a variety of applications. Lately, a new isotherm for hydrophobic interaction chromatography (HIC) under consideration of water molecules as participants was proposed, enabling an accurate description of HIC. In this work, based on similarities between protein precipitation and HIC, a new precipitation model was derived. In the proposed model, the formation of protein-protein interfaces is thought to be driven by hydrophobic effects, involving a reorganization of the well-ordered water structure on the hydrophobic surfaces of the protein-protein complex. To demonstrate model capability, high-throughput precipitation experiments with pure or prior to the experiments purified proteins lysozyme, myoglobin, bovine serum albumin, and one mAb were conducted at various pH values. Polyethylene glycol (PEG) 6000 was used as precipitant. The precipitant concentration as well as the initial protein concentration was varied systematically. For all investigated proteins, the initial protein concentrations were varied between 1.5 mg/mL and 12 mg/mL. The calibrated models were successfully validated with experimental data. This mechanistic description of protein precipitation process offers mathematical explanation of the precipitation behavior of proteins at PEG concentration, protein concentration, protein size, and pH.


Asunto(s)
Anticuerpos Monoclonales/química , Polietilenglicoles/química , Albúmina Sérica Bovina/química , Agua/química , Animales , Bovinos , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas
3.
J Chromatogr A ; 1547: 37-44, 2018 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-29530404

RESUMEN

Fourier-transform infrared spectroscopy (FTIR) is a well-established spectroscopic method in the analysis of small molecules and protein secondary structure. However, FTIR is not commonly applied for in-line monitoring of protein chromatography. Here, the potential of in-line FTIR as a process analytical technology (PAT) in downstream processing was investigated in three case studies addressing the limits of currently applied spectroscopic PAT methods. A first case study exploited the secondary structural differences of monoclonal antibodies (mAbs) and lysozyme to selectively quantify the two proteins with partial least squares regression (PLS) giving root mean square errors of cross validation (RMSECV) of 2.42 g/l and 1.67 g/l, respectively. The corresponding Q2 values are 0.92 and, respectively, 0.99, indicating robust models in the calibration range. Second, a process separating lysozyme and PEGylated lysozyme species was monitored giving an estimate of the PEGylation degree of currently eluting species with RMSECV of 2.35 g/l for lysozyme and 1.24 g/l for PEG with Q2 of 0.96 and 0.94, respectively. Finally, Triton X-100 was added to a feed of lysozyme as a typical process-related impurity. It was shown that the species could be selectively quantified from the FTIR 3D field without PLS calibration. In summary, the proposed PAT tool has the potential to be used as a versatile option for monitoring protein chromatography. It may help to achieve a more complete implementation of the PAT initiative by mitigating limitations of currently used techniques.


Asunto(s)
Cromatografía/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Anticuerpos Monoclonales/aislamiento & purificación , Calibración , Análisis de los Mínimos Cuadrados , Modelos Teóricos , Muramidasa/aislamiento & purificación , Octoxinol/química , Polietilenglicoles/química
4.
J Chromatogr A ; 1533: 66-76, 2018 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-29229331

RESUMEN

In the past decades, research was carried out to find cost-efficient alternatives to Protein A chromatography as a capture step in monoclonal antibody (mAb) purification processes. In this work, polyethylene glycol (PEG) precipitation has shown promising results in the case of mAb yield and purity. Especially with respect to continuous processing, PEG precipitation has many advantages, like low cost of goods, simple setup, easy scalability, and the option to handle perfusion reactors. Nevertheless, replacing Protein A has the disadvantage of renouncing a platform unit operation as well. Furthermore, PEG precipitation is not capable of reducing high molecular weight impurities (HMW) like aggregates or DNA. To overcome these challenges, an integrated process strategy combining PEG precipitation with cation-exchange chromatography (CEX) for purification of a mAb is presented. This work discusses the process strategy as well as the associated fast, easy, and material-saving process development platform. These were implemented through the combination of high-throughput methods with empirical and mechanistic modeling. The strategy allows the development of a common batch process. Additionally, it is feasible to develop a continuous process. In the presented case study, a mAb provided from cell culture fluid (HCCF) was purified. The precipitation and resolubilization conditions as well as the chromatography method were optimized, and the mutual influence of all steps was investigated. A mAb yield of over 95.0% and a host cell protein (HCP) reduction of over 99.0% could be shown. At the same time, the aggregate level was reduced from 3.12% to 1.20% and the DNA level was reduced by five orders of magnitude. Furthermore, the mAb was concentrated three times to a final concentration of 11.9mg/mL.


Asunto(s)
Anticuerpos Monoclonales/aislamiento & purificación , Técnicas de Química Analítica/métodos , Cromatografía por Intercambio Iónico , Anticuerpos Monoclonales/biosíntesis , Técnicas de Química Analítica/economía , Polietilenglicoles/química
5.
J Pharm Biomed Anal ; 128: 216-225, 2016 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-27268946

RESUMEN

In the biopharmaceutical industry it is mandatory to know and ensure the correct protein phase state as a critical quality attribute in every process step. Unwanted protein precipitation or crystallization can lead to column, pipe or filter blocking. In formulation, the formation of aggregates can even be lethal when injected into the patient. The typical methodology to illustrate protein phase states is the generation of protein phase diagrams. Commonly, protein phase behavior is shown in dependence of protein and precipitant concentration. Despite using high-throughput methods for the generation of phase diagrams, the time necessary to reach equilibrium is the bottleneck. Faster methods to predict protein phase behavior are desirable. In this study, hydrophobic interaction chromatography retention times were correlated to crystal size and form. High-throughput thermal stability measurements (melting and aggregation temperatures), using an Optim(®)2 system, were successfully correlated to glucose isomerase stability. By using hydrophobic interaction chromatography and thermal stability determinations, glucose isomerase conformational and colloidal stability were successfully predicted for different salts in a specific pH range.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Proteínas/química , Sales (Química)/química , Isomerasas Aldosa-Cetosa/química , Sulfato de Amonio , Cromatografía , Coloides/química , Calor , Concentración de Iones de Hidrógeno , Tamaño de la Partícula , Conformación Proteica , Estándares de Referencia , Cloruro de Sodio
6.
AMB Express ; 4: 24, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24949259

RESUMEN

The yeast strains Cryptococcus podzolicus, Trichosporon porosum and Pichia segobiensis were isolated from soil samples and identified as oleaginous yeast strains beneficial for the establishment of microbial production processes for sustainable lipid production suitable for several industrial applications. When cultured in bioreactors with glucose as the sole carbon source C. podzolicus yielded 31.8% lipid per dry biomass at 20°C, while T. porosum yielded 34.1% at 25°C and P. segobiensis 24.6% at 25°C. These amounts correspond to lipid concentrations of 17.97 g/L, 17.02 g/L and 12.7 g/L and volumetric productivities of 0.09 g/Lh, 0.1 g/Lh and 0.07 g/Lh, respectively. During the culture of C. podzolicus 30 g/l gluconic acid was detected as by-product in the culture broth and 12 g/L gluconic acid in T. porosum culture. The production of gluconic acid was eliminated for both strains when glucose was substituted by xylose as the carbon source. Using xylose lipid yields were 11.1 g/L and 13.9 g/L, corresponding to 26.8% and 33.4% lipid per dry biomass and a volumetric productivity of 0.07 g/Lh and 0.09 g/Lh, for C. podzolicus and T. porosum respectively. The fatty acid profile analysis showed that oleic acid was the main component (39.6 to 59.4%) in all three strains and could be applicable for biodiesel production. Palmitic acid (18.4 to 21.1%) and linolenic acid (7.5 to 18.7%) are valuable for cosmetic applications. P. segobiensis had a considerable amount of palmitoleic acid (16% content) and may be suitable for medical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA