Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Metab Eng ; 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38802041

RESUMEN

Integration of novel compounds into biological processes holds significant potential for modifying or expanding existing cellular functions. However, the cellular uptake of these compounds is often hindered by selectively permeable membranes. We present a novel bacterial transport system that has been rationally designed to address this challenge. Our approach utilizes a highly promiscuous sulfonate membrane transporter, which allows the passage of cargo molecules attached as amides to a sulfobutanoate transport vector molecule into the cytoplasm of the cell. These cargoes can then be unloaded from the sulfobutanoyl amides using an engineered variant of the enzyme γ-glutamyl transferase, which hydrolyzes the amide bond and releases the cargo molecule within the cell. Here, we provide evidence for the broad substrate specificity of both components of the system by evaluating a panel of structurally diverse sulfobutanoyl amides. Furthermore, we successfully implement the synthetic uptake system in vivo and showcase its functionality by importing an impermeant non-canonical amino acid.

2.
Chemistry ; : e202401254, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687344

RESUMEN

An acyclic phosphonate-linked nucleic acid backbone (ZNA) demonstrated the capability to support duplex formation and propagate genetic information in vivo, unveiling its potential for evolution into a synthetic genetic system (XNA). To determine the structural impact of such modification, modified Dickerson Drew DNA dodecamers (DDDs) were prepared by solid phase synthesis, each containing either an (R) or (S) isomeric form of a cytosine ZNA nucleotide. While the DDD is known to adopt a stable duplex, both duplex and hairpin forms were simultaneously observed for both modified oligonucleotides by NMR spectroscopy over a broad temperature range (5-65 °C). Diffusion-ordered spectroscopy (DOSY) experiments allowed to separate duplex and hairpin signals based on the different diffusion constants of both conformational states. For the oligomer containing (R)-ZNA, only the duplex form occurred at 5 °C, while it was not possible to determine by NMR a single hairpin conformation at higher temperatures. In the case of the (S)-ZNA nucleoside modified oligomer, both hairpin and duplex forms were observable at 0 °C, while a single hairpin conformation was detected at 37 °C, suggesting a higher destabilizing effect on dsDNA.

3.
Biochimie ; 214(Pt A): 112-122, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37558081

RESUMEN

I-motifs are non-canonical DNA structures consisting of two parallel strands held together by hemiprotonated cytosine-cytosine+ base pairs, which intercalate to form a ordered column of stacked base pairs. This unique structure covers potential relevance in various fields, including gene regulation and biotechnological applications. A unique structural feature of I-motifs (iM), is the presence of sugar-sugar interactions through their extremely narrow minor grooves. Consistently, oligonucleotides containing pentose derivatives such as ribose, 2'-deoxyribose, arabinose, and 2'-deoxy-2'-fluoroarabinose highlighted a very different attitude to fold into iM. On the other hand, there is significant attention focused on exploring sugar-modifications that can increase nucleic acids resistance to nuclease degradation, a crucial requirement for therapeutic applications. An interesting example, not addressed in the iM field yet, is represented by hexitol nucleic acid (HNA), a metabolically stable six-membered ring analogue compatible with A-like double helix formation. Herein, we selected two DNA C-rich Tetrahymena telomeric sequences whose tetrameric iMs were already resolved by NMR and we investigated the iM folding of related HNA and RNA oligonucleotides by circular dichroism, differential scanning calorimetry and NMR. The comparison of their behaviours vs the DNA counterparts provided interesting insights into the influence of the sugar on iM folding. In particular, ribose and hexitol prevented iM formation. However, by clustering the hexitol-containing residues at the 3'-end, it was possible to modulate the distribution of the different topological species described for the DNA iMs. These data open new avenues for the exploitation of sugar modifications for I-motif characterization and applications.


Asunto(s)
Ácidos Nucleicos , Tetrahymena , Ribosa , Tetrahymena/genética , Conformación de Ácido Nucleico , ADN/genética , ADN/química , Oligonucleótidos/química , Citosina/química
4.
ChemMedChem ; 18(16): e202300200, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37221137

RESUMEN

The plethora of viral outbreaks experienced in the last decade, together with the widespread distribution of many re-emerging and newly emerging viruses, emphasize the urgent need for novel broad-spectrum antivirals as tools for early intervention in case of future epidemics. Non-natural nucleosides have been at the forefront for the treatment of infectious diseases for many years and still represent one of the most successful classes of antiviral molecules on the market. In the attempt to explore the biologically relevant chemical space of this class of antimicrobials, we describe herein the development of novel base-modified nucleosides by converting previously identified 2,6-diaminopurine antivirals into the corresponding D/L ribonucleosides, acyclic nucleosides and prodrug derivatives. A phenotypic screening against viruses belonging to different families (Flaviviridae, Coronaviridae, Retroviridae) and against a panel of Gram-positive and Gram-negative bacteria, allowed to identify a few interesting molecules with broad-spectrum antimicrobial activities.


Asunto(s)
Antivirales , Virus , Humanos , Antivirales/química , Nucleósidos/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias Gramnegativas , Bacterias Grampositivas
5.
Eur J Med Chem ; 255: 115379, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37120998

RESUMEN

Molecular dynamics (MD) simulations provided insights into the favorable interactions between xylose nucleosides bearing a phosphonate moiety at their 3'-position and specific residues at the active site of the archetypal RNA-dependent RNA-polymerase (RdRp) of Enterovirus 71. Therefore, a series of xylosyl nucleoside phosphonates with adenine, uracil, cytosine, guanosine, and hypoxanthine as nucleobases were synthesized through multistep sequences starting from a single common precursor. Following antiviral activity evaluation, the adenine containing analogue was found to possess good antiviral activity against RNA viruses displaying an EC50 of 12 and 16 µM against measles virus (MeV) and enterovirus-68 (EV-68), respectively, whereas lacking cytotoxicity.


Asunto(s)
Antivirales , Organofosfonatos , Antivirales/química , Nucleósidos/química , Organofosfonatos/química , Relación Estructura-Actividad , Adenina , ARN
6.
Nucleic Acids Res ; 51(4): 1501-1511, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36611237

RESUMEN

An enzymatic method has been successfully established enabling the generation of partially base-modified RNA (previously named RZA) constructs, in which all G residues were replaced by isomorphic fluorescent thienoguanosine (thG) analogs, as well as fully modified RZA featuring thG, 5-bromocytosine, 7-deazaadenine and 5-chlorouracil. The transcriptional efficiency of emissive fully modified RZA was found to benefit from the use of various T7 RNA polymerase variants. Moreover, dthG could be incorporated into PCR products by Taq DNA polymerase together with the other three base-modified nucleotides. Notably, the obtained RNA products containing thG as well as thG together with 5-bromocytosine could function as effectively as natural sgRNAs in an in vitro CRISPR-Cas9 cleavage assay. N1-Methylpseudouridine was also demonstrated to be a faithful non-canonical substitute of uridine to direct Cas9 nuclease cleavage when incorporated in sgRNA. The Cas9 inactivation by 7-deazapurines indicated the importance of the 7-nitrogen atom of purines in both sgRNA and PAM site for achieving efficient Cas9 cleavage. Additional aspects of this study are discussed in relation to the significance of sgRNA-protein and PAM--protein interactions that were not highlighted by the Cas9-sgRNA-DNA complex crystal structure. These findings could expand the impact and therapeutic value of CRISPR-Cas9 and other RNA-based technologies.


With the advent of CRISPR-Cas9 gene editing, we now have to hand a simple two-component system amendable to silencing and knock-in editing effectively any gene. Yet we must not forget that the implications of immunotoxicity along with the poor stability and specificity of canonical nucleic acids hold enormous challenges for in vivo applications, especially in gene therapy. Our study endorses the feasibility of the enzymatic approach to incorporate nucleobase modifications into the CRISPR-Cas9 system unveiling the tolerance of Cas9 to N1-methylpseudouridine (m1Ψ)- and emissive thienoguanosine (thG)-modified sgRNA as well as thus far uncharted structural requirements for ensuring proper PAM recognition.


Asunto(s)
Sistemas CRISPR-Cas , Ácidos Nucleicos , ADN , Edición Génica/métodos , ARN/química , Fluorescencia , Guanosina/química
7.
Curr Opin Virol ; 57: 101279, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36403338

RESUMEN

The COVID-19 pandemic has accelerated the development of nucleoside analogs to treat respiratory virus infections, with remdesivir being the first compound to receive worldwide authorization and three other nucleoside analogs (i.e. favipiravir, molnupiravir, and bemnifosbuvir) in the pipeline. Here, we summarize the current knowledge concerning their clinical efficacy in suppressing the virus and reducing the need for hospitalization or respiratory support. We also mention trials of favipiravir and lumicitabine, for influenza and respiratory syncytial virus, respectively. Besides, we outline how nucleoside analogs interact with the polymerases of respiratory viruses, to cause lethal virus mutagenesis or disturbance of viral RNA synthesis. In this way, we aim to convey the key findings on this rapidly evolving class of respiratory virus medication.


Asunto(s)
COVID-19 , Virus Sincitial Respiratorio Humano , Humanos , Nucleósidos/farmacología , Nucleósidos/uso terapéutico , Replicación Viral , Pandemias , Resultado del Tratamiento
8.
mSphere ; 7(6): e0037822, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36317894

RESUMEN

African swine fever virus (ASFV) causes a highly contagious hemorrhagic disease with case fatality rates approaching 100% in domestic pigs. ASFV is responsible for substantial economic losses, but despite ongoing efforts, no vaccine or antiviral agent is currently available. Attempts to control the spread of ASFV are dependent on early detection, adherence to biosecurity measures, and culling of infected herds. However, an effective antiviral agent may be used in lieu of or in conjunction with a vaccine to effectively curb ASFV outbreaks. The dose-dependent antiviral activities of two amidate prodrugs (compounds 1a and 1b) of O-2-alkylated 3-fluoro-2-(phosphonomethoxy)propyl cytosine [(R)-O-2-alkylated FPMPC] against ASFV isolates of four different genotypes were determined. Both compounds were found to inhibit ASFV progeny virus output by >90% at noncytotoxic concentrations (<25 µM) in primary porcine macrophages. Analysis of viral transcription and viral protein synthesis indicated that these acyclic nucleotide analogues inhibited late gene expression. Interestingly, time-of-addition studies suggest different viral targets of the compounds, which may be attributed to their differing amino acid prodrug moieties. In view of their promising antiviral activity, these nucleotide analogues merit further evaluation as potential prophylactic and/or therapeutic agents against ASFV infection and their antiviral efficacy in vivo should be considered. IMPORTANCE African swine fever virus is a highly contagious hemorrhagic viral disease. Since its transcontinental spread to Georgia in 2007, ASFV has continued to spread across the globe into countries previously without infection. It is responsible for substantial losses in the domestic pig population and presents a significant threat to the global swine industry. Despite ongoing efforts, there are no vaccines currently available; in their absence, antiviral agents may be a viable alternative. The significance of our research is in identifying the pan-genotype antiviral activity of prodrugs of O-2-alkylated 3-fluoro-2-(phosphonomethoxy)propyl cytosine, which will drive further research on the development of these compounds as antivirals against ASFV.


Asunto(s)
Virus de la Fiebre Porcina Africana , Profármacos , Porcinos , Animales , Virus de la Fiebre Porcina Africana/genética , Profármacos/farmacología , Nucleósidos/farmacología , Antivirales/farmacología , Sus scrofa , Genotipo , Nucleótidos
9.
Front Chem ; 10: 1008075, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36186582

RESUMEN

G-quadruplexes (G4s) are nucleic acid secondary structures detected within human chromosomes, that cluster at gene promoters and enhancers. This suggests that G4s may play specific roles in the regulation of gene expression. Within a distinct subgroup of G-rich domains, the formation of two or more adjacent G4 units (G4-repeats) is feasible. Recently it was shown that Vimentin, a protein highly expressed within mesenchymal cells, selectively recognizes these arrangements. Putative G4-repeats have been searched within the human gene proximal promoters by the bioinformatics tool QPARSE and they resulted to be enriched at genes related to epithelial-to-mesenchymal transition (EMT). This suggested that Vimentin binding at these sites might be relevant for the maintenance of the mesenchymal phenotype. Among all the identified sequences, in the present study we selected the one located within the promoter of the TEAD4 oncogene. TEAD4 codifies for a transcriptional enhancer factor, TEAD4, that actively promotes EMT, supporting, cell proliferation and migration. Moreover, in colorectal cancer cells TEAD4 directly enhances the expression of Vimentin. Thus, the possible interaction of Vimentin with TEAD4 promoter could highlight a positive feedback loop between these two factors, associated to important tumor metastasis related events. Here, we exploited spectroscopic and electrophoretic measurements under different conditions to address the folding behavior of the selected sequence. This allowed us to validate the folding of TEAD4 promoter into a G4-repeat able to interact with Vimentin.

10.
J Med Chem ; 65(13): 9396-9417, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35754374

RESUMEN

Minor structural modifications of acyclic nucleoside phosphonates can dramatically affect their antiviral properties. This work discloses a shift in the selectivity spectrum of 3-hydroxy-2-(phosphonomethoxy)propyl (HPMP) nucleotides from herpesviruses toward hepatitis B virus (HBV) induced by their acyclic chain 2-substitution with a nonpolar group. Two series of racemic (R,S)-2-methyl-3-hydroxy-2-(phosphonomethoxy)propyl (MHPMP) and (R,S)-2-ethynyl-3-hydroxy-2-(phosphonomethoxy)propyl (EHPMP) nucleotides were initially synthesized. Among these, guanine-containing derivatives exhibited significant anti-HBV activities in the submicromolar range. Enantioenriched MHPMPG and EHPMPG analogues were subsequently obtained by Sharpless asymmetric epoxidation. The (S)-enantiomers possessed an 8- to 26-fold higher potency than the relative (R)-forms. A further comparison of the EC90 values indicated that (S)-EHPMPG inhibited HBV replication more effectively than its 2-methyl analogue. A phosphonodiamidate prodrug of (S)-EHPMPG was thus prepared and found to exert a remarkably high anti-HBV activity (EC50 = 9.27 nM) with excellent selectivity (SI50 > 10,787), proving to be a promising candidate for anti-HBV drug development.


Asunto(s)
Herpesvirus Cercopitecino 1 , Organofosfonatos , Antivirales/química , Antivirales/farmacología , Virus de la Hepatitis B , Nucleósidos/química , Nucleósidos/farmacología , Nucleótidos , Organofosfonatos/química , Organofosfonatos/farmacología
11.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-35337170

RESUMEN

In the past two decades, significant efforts have been put into designing small molecules to target selected genomic sites where DNA conformational rearrangements control gene expression. G-rich sequences at oncogene promoters are considered good points of intervention since, under specific environmental conditions, they can fold into non-canonical tetrahelical structures known as G-quadruplexes. However, emerging evidence points to a frequent lack of correlation between small molecule targeting of G-quadruplexes at gene promoters and the expression of the associated protein, which hampers pharmaceutical applications. The wide genomic localization of G-quadruplexes along with their highly polymorphic behavior may account for this scenario, suggesting the need for more focused drug design strategies. Here, we will summarize the G4 structural features that can be considered to fulfill this goal. In particular, by comparing a telomeric sequence with the well-characterized G-rich domain of the KIT promoter, we will address how multiple secondary structures might cooperate to control genome architecture at a higher level. If this holds true, the link between drug-DNA complex formation and the associated cellular effects will need to be revisited.

12.
Annu Rep Med Chem ; 57: 49-107, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34744210

RESUMEN

Despite considerable progress in the development of antiviral drugs, among which anti-immunodeficiency virus (HIV) and anti-hepatitis C virus (HCV) medications can be considered real success stories, many viral infections remain without an effective treatment. This not only applies to infectious outbreaks caused by zoonotic viruses that have recently spilled over into humans such as severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), but also ancient viral diseases that have been brought under control by vaccination such as variola (smallpox), poliomyelitis, measles, and rabies. A largely unsolved problem are endemic respiratory infections due to influenza, respiratory syncytial virus (RSV), and rhinoviruses, whose associated morbidity will likely worsen with increasing air pollution. Furthermore, climate changes will expose industrialized countries to a dangerous resurgence of viral hemorrhagic fevers, which might also become global infections. Herein, we summarize the recent progress that has been made in the search for new antivirals against these different threats that the world population will need to confront with increasing frequency in the next decade.

13.
RSC Med Chem ; 12(5): 804-808, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34124679

RESUMEN

The substantial impact of acyclic nucleoside phosphonates (ANPs) on human medicine encourages the synthesis of new ANP analogues with a potentially differentiated antiviral spectrum. Herein, we demonstrate the functionalization of the 2-position of the (R,S)-3-hydroxy-2-(phosphonomethoxy)propyl side-chain of an inactive ANP with a polar cyano group to generate a thymine analogue with selective inhibition of hepatitis B virus (HBV) replication (SI > 302; EC50 = 0.33 µM), without significant antiretroviral activity. These findings suggest new strategies to synthesize unique ANPs with a targeted antiviral profile.

14.
ACS Med Chem Lett ; 12(1): 88-92, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33479570

RESUMEN

In addition to its therapeutic value as a chemotherapy drug, gemcitabine is of ongoing interest to the scientific community for its broad-spectrum antiviral activity. Herein the synthesis of 4'-methoxy- and 4'-fluoro-substituted gemcitabine analogues along with their phosphoramidate prodrugs is described. Among these derivatives, 4'-fluorogemcitabine proved to be active against varicella zoster virus (VZV, TK+ strain) with an EC50 of 0.042 µM and produced significant cytotoxicity (CC50 = 0.11 µM). Upon derivatization of this trifluoro nucleoside as its prodrug, decreased anti-VZV activity was observed, but with a concomitantly improved selectivity index (SI = 36). When this prodrug was tested against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), its antiviral activity (EC50 = 0.73 µM) was comparable to or slightly lower than its cytotoxic concentration in measurements of cell growth and cell morphology, respectively.

15.
J Med Chem ; 63(22): 13851-13860, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33191744

RESUMEN

Standard literature procedures for the chemical synthesis of l-threose nucleosides generally employ l-ascorbic acid as starting material. Herein, we have explored two alternative routes that start from either l-arabitol or l-diethyl tartrate, both affording 2-O-methyl-l-threofuranose as a key building block for nucleobase incorporation. The access to multigram quantities of this glycosyl donor in a reproducible fashion allows for the preparation of 2'-deoxy-α-l-threofuranosyl phosphonate nucleosides on a large scale. This methodology was applied to the gram scale synthesis of an aryloxy amidate prodrug of phosphonomethoxydeoxythreosyl adenine. This prodrug exerted potent activity against an entecavir-resistant hepatitis B virus (HBV) strain, while leading to a significant reduction in the levels of HBV covalently closed circular DNA in a cellular assay. Furthermore, its remarkable anti-HBV efficacy was also confirmed in vivo using a hydrodynamic injection-based HBV mouse model, without relevant toxicity and systemic exposure occurring.


Asunto(s)
Antivirales/farmacología , ADN Circular/genética , Farmacorresistencia Viral/efectos de los fármacos , Guanina/análogos & derivados , Virus de la Hepatitis B/efectos de los fármacos , Hepatitis B/tratamiento farmacológico , Profármacos/farmacología , Adenina/química , Animales , ADN Circular/análisis , ADN Viral/análisis , ADN Viral/genética , Guanina/farmacología , Hepatitis B/virología , Virus de la Hepatitis B/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Nucleósidos/química , Replicación Viral
16.
ACS Med Chem Lett ; 11(8): 1605-1610, 2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32832030

RESUMEN

A number of biologically active nucleoside analogues contain the adenine isostere 4-amino-pyrrolo[2,1-f][1,2,4]triazine connected to various sugar moieties through a C-C anomeric linkage. We employed palladium-catalyzed cross-coupling chemistry to promptly functionalize the 7-position of such a heterocyclic scaffold with various alkynyl and aryl groups starting from a common 7-iodo-pyrrolotriazine C-ribonucleoside intermediate. Analogues bearing a 7-cyclopropyl-, 7-propyl-, and 7-butylacetylene moiety displayed potent cytotoxic activity, with the latest being the most selective of this series toward cancer cells. Further insights revealed that such C-nucleosides could exert their antiproliferative action by causing dose-dependent DNA damage.

17.
ACS Med Chem Lett ; 11(7): 1410-1415, 2020 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-32676147

RESUMEN

Three series of amidate prodrugs of O-2-alkylated acyclic nucleosides of the 3-fluoro-2-(phosphonomethoxy)propyl (FPMP), cyclic 3-hydroxy-2-(phosphonomethoxypropyl) (cHPMP), and 2-(phosphonomethoxypropyl) (PMP)-type featuring cytosine and 5-fluorocytosine as nucleobases were readily synthesized. Both the aspartic acid ester and valine ester prodrugs of (R)-O-2-alkylated FPMPC exhibited potent anti-HCMV and VZV activity in the micromolar range. In addition, the valine ester prodrugs of 5-fluorocytosine (R)-O-2-alkylated FPMP and (R)-O-2-alkylated cHPMPC showed inhibitory activity at molar concentrations against these viruses.

18.
Eur J Med Chem ; 195: 112198, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32294613

RESUMEN

Synthetic nucleoside analogues characterized by a C-C anomeric linkage form a family of promising therapeutics against infectious and malignant diseases. Herein, C-nucleosides comprising structural variations at the sugar and nucleobase moieties were examined for their ability to inhibit both murine and human norovirus RNA-dependent RNA polymerase (RdRp). We have found that the combination of 4-amino-pyrrolo[2,1-f][1,2,4]triazine and its 7-halogenated congeners with either a d-ribose or 2'-C-methyl-d-ribose unit resulted in analogues with good antiviral activity against murine norovirus (MNV), albeit coupled with a significant cytotoxicity. Among this series, 4-aza-7,9-dideazaadenosine notably retained a strong antiviral effect in a human norovirus (HuNoV) replicon assay with an EC50 = 0.015 µM. This study demonstrates that C-nucleosides can be used as viable starting scaffolds for further optimization towards the development of nucleoside-based inhibitors of norovirus replication.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Norovirus/efectos de los fármacos , Nucleósidos/química , Nucleósidos/farmacología , Pirroles/química , Triazinas/química , Animales , Antivirales/toxicidad , Línea Celular , Diseño de Fármacos , Ratones , Norovirus/fisiología , Nucleósidos/toxicidad , Relación Estructura-Actividad , Replicación Viral/efectos de los fármacos
19.
Chem Commun (Camb) ; 56(18): 2787-2790, 2020 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-32025667

RESUMEN

Expanding the catalytic repertoire of ribozymes to include vitamin synthesis requires efficient labelling of RNA with the substrate of interest, prior to in vitro selection. For this purpose, we rationally designed and synthesized six GMP-conjugates carrying a synthetic pre-thiamine or biotin precursor and investigated their transcription incorporation properties by T7 RNA polymerase.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Guanosina Monofosfato/biosíntesis , Proteínas Virales/metabolismo , Vitaminas/biosíntesis , Biocatálisis , Biotina/química , Biotina/metabolismo , Guanosina Monofosfato/química , Estructura Molecular , Tiamina/química , Tiamina/metabolismo , Vitaminas/química
20.
Front Chem ; 8: 616863, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33490040

RESUMEN

The use of the phosphonate motif featuring a carbon-phosphorous bond as bioisosteric replacement of the labile P-O bond is widely recognized as an attractive structural concept in different areas of medicinal chemistry, since it addresses the very fundamental principles of enzymatic stability and minimized metabolic activation. This review discusses the most influential successes in drug design with special emphasis on nucleoside phosphonates and their prodrugs as antiviral and cancer treatment agents. A description of structurally related analogs able to interfere with the transmission of other infectious diseases caused by pathogens like bacteria and parasites will then follow. Finally, molecules acting as agonists/antagonists of P2X and P2Y receptors along with nucleotidase inhibitors will also be covered. This review aims to guide readers through the fundamentals of nucleoside phosphonate therapeutics in order to inspire the future design of molecules to target infections that are refractory to currently available therapeutic options.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...