Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Neurosci ; 18: 1341734, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38445256

RESUMEN

Background: Intracranial space is divided into three compartments by the falx cerebri and tentorium cerebelli. We assessed whether cerebrospinal fluid (CSF) distribution evaluated by a specifically developed deep-learning neural network (DLNN) could assist in quantifying mass effect. Methods: Head trauma CT scans from a high-volume emergency department between 2018 and 2020 were retrospectively analyzed. Manual segmentations of intracranial compartments and CSF served as the ground truth to develop a DLNN model to automate the segmentation process. Dice Similarity Coefficient (DSC) was used to evaluate the segmentation performance. Supratentorial CSF Ratio was calculated by dividing the volume of CSF on the side with reduced CSF reserve by the volume of CSF on the opposite side. Results: Two hundred and seventy-four patients (mean age, 61 years ± 18.6) after traumatic brain injury (TBI) who had an emergency head CT scan were included. The average DSC for training and validation datasets were respectively: 0.782 and 0.765. Lower DSC were observed in the segmentation of CSF, respectively 0.589, 0.615, and 0.572 for the right supratentorial, left supratentorial, and infratentorial CSF regions in the training dataset, and slightly lower values in the validation dataset, respectively 0.567, 0.574, and 0.556. Twenty-two patients (8%) had midline shift exceeding 5 mm, and 24 (8.8%) presented with high/mixed density lesion exceeding >25 ml. Fifty-five patients (20.1%) exhibited mass effect requiring neurosurgical treatment. They had lower supratentorial CSF volume and lower Supratentorial CSF Ratio (both p < 0.001). A Supratentorial CSF Ratio below 60% had a sensitivity of 74.5% and specificity of 87.7% (AUC 0.88, 95%CI 0.82-0.94) in identifying patients that require neurosurgical treatment for mass effect. On the other hand, patients with CSF constituting 10-20% of the intracranial space, with 80-90% of CSF specifically in the supratentorial compartment, and whose Supratentorial CSF Ratio exceeded 80% had minimal risk. Conclusion: CSF distribution may be presented as quantifiable ratios that help to predict surgery in patients after TBI. Automated segmentation of intracranial compartments using the DLNN model demonstrates a potential of artificial intelligence in quantifying mass effect. Further validation of the described method is necessary to confirm its efficacy in triaging patients and identifying those who require neurosurgical treatment.

2.
J Med Virol ; 95(5): e28787, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37219059

RESUMEN

INTRODUCTION: During COVID-19 pandemic, artificial neural network (ANN) systems have been providing aid for clinical decisions. However, to achieve optimal results, these models should link multiple clinical data points to simple models. This study aimed to model the in-hospital mortality and mechanical ventilation risk using a two step approach combining clinical variables and ANN-analyzed lung inflammation data. METHODS: A data set of 4317 COVID-19 hospitalized patients, including 266 patients requiring mechanical ventilation, was analyzed. Demographic and clinical data (including the length of hospital stay and mortality) and chest computed tomography (CT) data were collected. Lung involvement was analyzed using a trained ANN. The combined data were then analyzed using unadjusted and multivariate Cox proportional hazards models. RESULTS: Overall in-hospital mortality associated with ANN-assigned percentage of the lung involvement (hazard ratio [HR]: 5.72, 95% confidence interval [CI]: 4.4-7.43, p < 0.001 for the patients with >50% of lung tissue affected by COVID-19 pneumonia), age category (HR: 5.34, 95% CI: 3.32-8.59 for cases >80 years, p < 0.001), procalcitonin (HR: 2.1, 95% CI: 1.59-2.76, p < 0.001, C-reactive protein level (CRP) (HR: 2.11, 95% CI: 1.25-3.56, p = 0.004), glomerular filtration rate (eGFR) (HR: 1.82, 95% CI: 1.37-2.42, p < 0.001) and troponin (HR: 2.14, 95% CI: 1.69-2.72, p < 0.001). Furthermore, the risk of mechanical ventilation is also associated with ANN-based percentage of lung inflammation (HR: 13.2, 95% CI: 8.65-20.4, p < 0.001 for patients with >50% involvement), age, procalcitonin (HR: 1.91, 95% CI: 1.14-3.2, p = 0.14, eGFR (HR: 1.82, 95% CI: 1.2-2.74, p = 0.004) and clinical variables, including diabetes (HR: 2.5, 95% CI: 1.91-3.27, p < 0.001), cardiovascular and cerebrovascular disease (HR: 3.16, 95% CI: 2.38-4.2, p < 0.001) and chronic pulmonary disease (HR: 2.31, 95% CI: 1.44-3.7, p < 0.001). CONCLUSIONS: ANN-based lung tissue involvement is the strongest predictor of unfavorable outcomes in COVID-19 and represents a valuable support tool for clinical decisions.


Asunto(s)
COVID-19 , Neumonía , Humanos , Anciano de 80 o más Años , Respiración Artificial , Mortalidad Hospitalaria , Pandemias , Polipéptido alfa Relacionado con Calcitonina , SARS-CoV-2 , Pulmón/diagnóstico por imagen , Factores de Riesgo , Redes Neurales de la Computación , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...