Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Mol Ecol Resour ; : e13969, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747336

RESUMEN

A major aim of evolutionary biology is to understand why patterns of genomic diversity vary within taxa and space. Large-scale genomic studies of widespread species are useful for studying how environment and demography shape patterns of genomic divergence. Here, we describe one of the most geographically comprehensive surveys of genomic variation in a wild vertebrate to date; the great tit (Parus major) HapMap project. We screened ca 500,000 SNP markers across 647 individuals from 29 populations, spanning ~30 degrees of latitude and 40 degrees of longitude - almost the entire geographical range of the European subspecies. Genome-wide variation was consistent with a recent colonisation across Europe from a South-East European refugium, with bottlenecks and reduced genetic diversity in island populations. Differentiation across the genome was highly heterogeneous, with clear 'islands of differentiation', even among populations with very low levels of genome-wide differentiation. Low local recombination rates were a strong predictor of high local genomic differentiation (FST), especially in island and peripheral mainland populations, suggesting that the interplay between genetic drift and recombination causes highly heterogeneous differentiation landscapes. We also detected genomic outlier regions that were confined to one or more peripheral great tit populations, probably as a result of recent directional selection at the species' range edges. Haplotype-based measures of selection were related to recombination rate, albeit less strongly, and highlighted population-specific sweeps that likely resulted from positive selection. Our study highlights how comprehensive screens of genomic variation in wild organisms can provide unique insights into spatio-temporal evolutionary dynamics.

2.
Evol Lett ; 8(1): 18-28, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38370545

RESUMEN

The recognition that climate change is occurring at an unprecedented rate means that there is increased urgency in understanding how organisms can adapt to a changing environment. Wild great tit (Parus major) populations represent an attractive ecological model system to understand the genomics of climate adaptation. They are widely distributed across Eurasia and they have been documented to respond to climate change. We performed a Bayesian genome-environment analysis, by combining local climate data with single nucleotide polymorphisms genotype data from 20 European populations (broadly spanning the species' continental range). We found 36 genes putatively linked to adaptation to climate. Following an enrichment analysis of biological process Gene Ontology (GO) terms, we identified over-represented terms and pathways among the candidate genes. Because many different genes and GO terms are associated with climate variables, it seems likely that climate adaptation is polygenic and genetically complex. Our findings also suggest that geographical climate adaptation has been occurring since great tits left their Southern European refugia at the end of the last ice age. Finally, we show that substantial climate-associated genetic variation remains, which will be essential for adaptation to future changes.

3.
Mamm Genome ; 34(4): 520-530, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37805667

RESUMEN

Suids, both domesticated and wild, are found on all continents except for Antarctica and provide valuable food resources for humans in addition to serving as important models for biomedical research. Continuing advances in genome sequencing have allowed researchers to compare the genomes from diverse populations of suids helping to clarify their evolution and dispersal. Further analysis of these samples may provide clues to improve disease resistance/resilience and productivity in domestic suids as well as better ways of classifying and conserving genetic diversity within wild and captive suids. Collecting samples from diverse populations of suids is resource intensive and may negatively impact endangered populations. Here we catalog extensive tissue and DNA samples from suids in collections in both Europe and North America. We include samples that have previously been used for whole genome sequencing, targeted DNA sequencing, RNA sequencing, and reduced representation bisulfite sequencing (RRBS). This work provides an important centralized resource for researchers who wish to access published databases.


Asunto(s)
Genoma , Genómica , Humanos , Porcinos , Animales , Genoma/genética , Análisis de Secuencia de ADN , Secuenciación Completa del Genoma , ADN
4.
Genome Res ; 33(9): 1455-1464, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37793781

RESUMEN

Assisted reproductive technologies (ARTs), including in vitro maturation and fertilization (IVF), are increasingly used in human and animal reproduction. Whether these technologies directly affect the rate of de novo mutation (DNM), and to what extent, has been a matter of debate. Here we take advantage of domestic cattle, characterized by complex pedigrees that are ideally suited to detect DNMs and by the systematic use of ART, to study the rate of de novo structural variation (dnSV) in this species and how it is impacted by IVF. By exploiting features of associated de novo point mutations (dnPMs) and dnSVs in clustered DNMs, we provide strong evidence that (1) IVF increases the rate of dnSV approximately fivefold, and (2) the corresponding mutations occur during the very early stages of embryonic development (one- and two-cell stage), yet primarily affect the paternal genome.


Asunto(s)
Desarrollo Embrionario , Familia , Embarazo , Femenino , Animales , Bovinos , Humanos , Mutación , Linaje , Genoma Humano
5.
Genet Sel Evol ; 55(1): 64, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723431

RESUMEN

BACKGROUND: China has one third of the worldwide indigenous pig breeds. The Henan province is one of the earliest pig domestication centers of China (about 8000 years ago). However, the precise genetic characteristics of the Henan local pig breeds are still obscure. To understand the origin and the effects of selection on these breeds, we performed various analyses on lineage composition, genetic structure, and detection of selection sweeps and introgression in three of these breeds (Queshan, Nanyang and Huainan) using genotyping data on 125 Queshan, 75 Nanyang, 16 Huainan pigs and 878 individuals from 43 Eurasian pig breeds. RESULTS: We found no clear evidence of ancestral domestic pig DNA lineage in the Henan local breeds, which have an extremely complicated genetic background. Not only do they share genes with some northern Chinese pig breeds, such as Erhualian, Hetaodaer, and Laiwu, but they also have a high admixture of genes from foreign pig breeds (33-40%). Two striking selection sweeps in small regions of chromosomes 2 and 14 common to the Queshan and Nanyang breeds were identified. The most significant enrichment was for lipid kinase activity (GO:0043550) with the genes FII, AMBRA1, and PIK3IP1. Another interesting 636.35-kb region on chromosome 14 contained a cluster of spermatogenesis genes (OSBP2, GAL3ST1, PLA2G3, LIMK2, and PATZ1), a bisexual sterility gene MORC2, and a fat deposition gene SELENOM. Reproduction and growth genes LRP4, FII, and ARHGAP1 were present in a 238.05-kb region on SSC2 under selection. We also identified five loci associated with body length (P = 0.004) on chromosomes 1 and 12 that were introgressed from foreign pig breeds into the Henan breeds. In addition, the Chinese indigenous pig breeds fell into four main types instead of the previously reported six, among which the Eastern type could be divided into two subgroups. CONCLUSIONS: Admixture of North China, East China and foreign pigs contributed to high genetic diversity of Henan local pigs. Ontology terms associated with lipid kinase activity and spermatogenesis and growth shaping by introgression of European genes in Henan pigs were identified through selective sweep analyses.


Asunto(s)
Metabolismo de los Lípidos , Sus scrofa , Masculino , Porcinos/genética , Animales , Sus scrofa/genética , China , Espermatogénesis/genética , Lípidos
6.
BMC Genomics ; 24(1): 225, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37127590

RESUMEN

BACKGROUND: Structural variants (SVs) are chromosomal segments that differ between genomes, such as deletions, duplications, insertions, inversions and translocations. The genomics revolution enabled the discovery of sub-microscopic SVs via array and whole-genome sequencing (WGS) data, paving the way to unravel the functional impact of SVs. Recent human expression QTL mapping studies demonstrated that SVs play a disproportionally large role in altering gene expression, underlining the importance of including SVs in genetic analyses. Therefore, this study aimed to generate and explore a high-quality bovine SV catalogue exploiting a unique cattle family cohort data (total 266 samples, forming 127 trios). RESULTS: We curated 13,731 SVs segregating in the population, consisting of 12,201 deletions, 1,509 duplications, and 21 multi-allelic CNVs (> 50-bp). Of these, we validated a subset of copy number variants (CNVs) utilising a direct genotyping approach in an independent cohort, indicating that at least 62% of the CNVs are true variants, segregating in the population. Among gene-disrupting SVs, we prioritised two likely high impact duplications, encompassing ORM1 and POPDC3 genes, respectively. Liver expression QTL mapping results revealed that these duplications are likely causing altered gene expression, confirming the functional importance of SVs. Although most of the accurately genotyped CNVs are tagged by single nucleotide polymorphisms (SNPs) ascertained in WGS data, most CNVs were not captured by individual SNPs obtained from a 50K genotyping array. CONCLUSION: We generated a high-quality SV catalogue exploiting unique whole genome sequenced bovine family cohort data. Two high impact duplications upregulating the ORM1 and POPDC3 are putative candidates for postpartum feed intake and hoof health traits, thus warranting further investigation. Generally, CNVs were in low LD with SNPs on the 50K array. Hence, it remains crucial to incorporate CNVs via means other than tagging SNPs, such as investigation of tagging haplotypes, direct imputation of CNVs, or direct genotyping as done in the current study. The SV catalogue and the custom genotyping array generated in the current study will serve as valuable resources accelerating utilisation of full spectrum of genetic variants in bovine genomes.


Asunto(s)
Genoma , Genómica , Femenino , Humanos , Bovinos , Animales , Genómica/métodos , Genotipo , Variaciones en el Número de Copia de ADN , Haplotipos , Polimorfismo de Nucleótido Simple , Proteínas Musculares/genética , Moléculas de Adhesión Celular/genética
7.
Front Genet ; 14: 1128033, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37091786

RESUMEN

Luchuan pig, an obese indigenous Chinese porcine breed, has a desirable meat quality and reproductive capacity. Duroc, a traditional western breed, shows a faster growth rate, high feed efficiency and high lean meat rate. Given the unique features these two porcine breeds have, it is of interest to investigate the underlying molecular mechanisms behind their distinctive nature. In this study, the metabolic and transcriptomic profiles of longissimus dorsi muscle from Duroc and Luchuan pigs were compared. A total of 609 metabolites were identified, 77 of which were significantly decreased in Luchuan compared to Duroc, and 71 of which were significantly elevated. Most differentially accumulated metabolites (DAMs) upregulated in Luchuan were glycerophospholipids, fatty acids, oxidized lipids, alcohols, and amines, while metabolites downregulated in Luchuan were mostly amino acids, organic acids and nucleic acids, bile acids and hormones. From our RNA-sequencing (RNA-seq) data we identified a total of 3638 differentially expressed genes (DEGs), 1802 upregulated and 1836 downregulated in Luchuan skeletal muscle compared to Duroc. Combined multivariate and pathway enrichment analyses of metabolome and transcriptome results revealed that many of the DEGs and DAMs are associated with critical energy metabolic pathways, especially those related to glucose and lipid metabolism. We examined the expression of important DEGs in two pathways, AMP-activated protein kinase (AMPK) signaling pathway and fructose and mannose metabolism, using Real-Time Quantitative Reverse Transcription PCR (qRT-PCR). Genes related to glucose uptake, glycolysis, glycogen synthesis, fatty acid synthesis (PFKFB1, PFKFB4, MPI, TPI1, GYS1, SLC2A4, FASN, IRS1, ULK1) are more activated in Luchuan, while genes related to fatty acid oxidation, cholesterol synthesis (CPT1A, HMGCR, FOXO3) are more suppressed. Energy utilization can be a decisive factor to the distinctive metabolic, physiological and nutritional characteristics in skeletal muscle of the two breeds we studied. Our research may facilitate future porcine breeding projects and can be used to reveal the potential molecular basis of differences in complex traits between various breeds.

8.
iScience ; 26(3): 106252, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36936794

RESUMEN

The pig IPEC-J2 and chicken SL-29 cell lines are of interest because of their untransformed nature and wide use in functional studies. Molecular characterization of these cell lines is important to gain insight into possible molecular aberrations. The aim of this paper is to provide a molecular and epigenetic characterization of the IPEC-J2 and SL-29 cell lines, a cell-line reference for the FAANG community, and future biomedical research. Whole genome sequencing, gene expression, DNA methylation, chromatin accessibility, and ChIP-seq of four histone marks (H3K4me1, H3K4me3, H3K27ac, H3K27me3) and an insulator (CTCF) are used to achieve these aims. Heteroploidy (aneuploidy) of various chromosomes was observed from whole genome sequencing analysis in both cell lines. Furthermore, higher gene expression for genes located on chromosomes with aneuploidy in comparison to diploid chromosomes was observed. Regulatory complexity of gene expression, DNA methylation, and chromatin accessibility was investigated through an integrative approach.

9.
Genomics ; 115(2): 110589, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36842749

RESUMEN

In general, the relationship between the predicted functional consequences of missense mutations mapping to genes known to be involved in human diseases and the severity of disease manifestations is weak. In this study, we tested in pigs whether missense single nucleotide polymorphisms (SNPs), predicted to have consequences on the function of genes related to lipid metabolism are associated with lipid phenotypes. Association analysis demonstrated that nine out of 72 nominally associated SNPs were classified as "highly" or "very highly consistent" in silico-predicted functional mutations and did not show association with lipid traits expected to be affected by inactivation of the corresponding gene. Although the lack of endophenotypes and the limited sample size of certain genotypic classes might have limited to some extent the reach of the current study, our data indicate that present-day bioinformatic tools have a modest ability to predict the impact of missense mutations on complex phenotypes.


Asunto(s)
Metabolismo de los Lípidos , Mutación Missense , Porcinos , Humanos , Animales , Metabolismo de los Lípidos/genética , Fenotipo , Genotipo , Lípidos , Polimorfismo de Nucleótido Simple
10.
Genet Sel Evol ; 55(1): 5, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36670351

RESUMEN

BACKGROUND: In poultry, the population structure of local breeds is usually complex mainly due to unrecorded breeding. Local chicken breeds offer an interesting proxy to understand the complexity of population structure in the context of human-mediated development of diverse morphologies and varieties. We studied 37 traditional Dutch chicken breeds to investigate population structure and the corresponding genomic impact using whole-genome sequence data. RESULTS: Looking at the genetic differences between breeds, the Dutch chicken breeds demonstrated a complex and admixed subdivided structure. The dissection of this complexity highlighted the influence of selection adhering to management purposes, as well as the role of geographic distance within subdivided breed clusters. Identification of signatures of genetic differentiation revealed genomic regions that are associated with diversifying phenotypic selection between breeds, including dwarf size (bantam) and feather color. In addition, with a case study of a recently developed bantam breed developed by crossbreeding, we provide a genomic perspective on the effect of crossbreeding. CONCLUSIONS: This study demonstrates the complex population structure of local traditional Dutch chicken, and provides insight into the genomic basis and the factors involved in the formation of this complexity.


Asunto(s)
Polimorfismo de Nucleótido Simple , Aves de Corral , Animales , Humanos , Aves de Corral/genética , Genómica , Hibridación Genética , Pollos/genética , Geografía
12.
PLoS One ; 17(10): e0276309, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36288367

RESUMEN

Here, we aimed to identify and characterize genomic regions that differ between Groningen White Headed (GWH) breed and other cattle, and in particular to identify candidate genes associated with coat color and/or eye-protective phenotypes. Firstly, whole genome sequences of 170 animals from eight breeds were used to evaluate the genetic structure of the GWH in relation to other cattle breeds by carrying out principal components and model-based clustering analyses. Secondly, the candidate genomic regions were identified by integrating the findings from: a) a genome-wide association study using GWH, other white headed breeds (Hereford and Simmental), and breeds with a non-white headed phenotype (Dutch Friesian, Deep Red, Meuse-Rhine-Yssel, Dutch Belted, and Holstein Friesian); b) scans for specific signatures of selection in GWH cattle by comparison with four other Dutch traditional breeds (Dutch Friesian, Deep Red, Meuse-Rhine-Yssel and Dutch Belted) and the commercial Holstein Friesian; and c) detection of candidate genes identified via these approaches. The alignment of the filtered reads to the reference genome (ARS-UCD1.2) resulted in a mean depth of coverage of 8.7X. After variant calling, the lowest number of breed-specific variants was detected in Holstein Friesian (148,213), and the largest in Deep Red (558,909). By integrating the results, we identified five genomic regions under selection on BTA4 (70.2-71.3 Mb), BTA5 (10.0-19.7 Mb), BTA20 (10.0-19.9 and 20.0-22.7 Mb), and BTA25 (0.5-9.2 Mb). These regions contain positional and functional candidate genes associated with retinal degeneration (e.g., CWC27 and CLUAP1), ultraviolet protection (e.g., ERCC8), and pigmentation (e.g. PDE4D) which are probably associated with the GWH specific pigmentation and/or eye-protective phenotypes, e.g. Ambilateral Circumocular Pigmentation (ACOP). Our results will assist in characterizing the molecular basis of GWH phenotypes and the biological implications of its adaptation.


Asunto(s)
Estudio de Asociación del Genoma Completo , Genoma , Bovinos/genética , Animales , Genoma/genética , Genómica , Mapeo Cromosómico , Fenotipo , Polimorfismo de Nucleótido Simple
13.
BMC Genomics ; 23(1): 669, 2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36151521

RESUMEN

BACKGROUND: We previously reported a familial thyroid follicular cell carcinoma (FCC) in a large number of Dutch German longhaired pointers and identified two deleterious germline mutations in the TPO gene associated with disease predisposition. However, the somatic mutation profile of the FCC in dogs has not been investigated at a genome-wide scale. RESULTS: Herein, we comprehensively investigated the somatic mutations that potentially contribute to the inherited tumor formation and progression using high depth whole-genome sequencing. A GNAS p.A204D missense mutation was identified in 4 out of 7 FCC tumors by whole-genome sequencing and in 20 out of 32 dogs' tumors by targeted sequencing. In contrast to this, in the human TC, mutations in GNAS gene have lower prevalence. Meanwhile, the homologous somatic mutation in humans has not been reported. These findings suggest a difference in the somatic mutation landscape between TC in these dogs and human TC. Moreover, tumors with the GNAS p.A204D mutation had a significantly lower somatic mutation burden in these dogs. Somatic structural variant and copy number alterations were also investigated, but no potential driver event was identified. CONCLUSION: This study provides novel insight in the molecular mechanism of thyroid carcinoma development in dogs. German longhaired pointers carrying GNAS mutations in the tumor may be used as a disease model for the development and testing of novel therapies to kill the tumor with somatic mutations in the GNAS gene.


Asunto(s)
Carcinoma , Células Epiteliales Tiroideas , Neoplasias de la Tiroides , Animales , Cromograninas/genética , Perros , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Humanos , Mutación , Mutación Missense , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/veterinaria
14.
Anim Genet ; 53(6): 829-840, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35993291

RESUMEN

The German Longhaired Pointer (GLP) breed is a versatile pointer dog breed. In the current study, we investigated the genetic diversity of these dogs based on SNP array data and compared it to 11 other pointer setter breeds. The results show that GLPs have a relatively low level of inbreeding among these pointer breeds. In addition, with the availability of pedigree information of the GLPs, we demonstrate that the correlation between pedigree-based inbreeding and genotype-based inbreeding coefficients was high (R = 0.89 and 0.85). By investigating population structure between these 12 pointer setter breeds we showed that GLP is a breed distinct from other pointers and shares common ancestry with a few other pointing breeds. Finally, we identified selection signatures in GLPs using the runs of homozygosity islands method. The most significant runs of homozygosity island was detected on chromosome 30 harboring the genes RYR3, FMN1, and GREM1. The RYR3 gene plays a role in skeletal muscle contraction while the FMN1 and GREM1 genes are involved in limb development. The selection on these three genes could have contributed to the excellent athletic performance of GLPs, which is an extremely important characteristic for this hunting dog.


Asunto(s)
Variación Genética , Canal Liberador de Calcio Receptor de Rianodina , Perros , Animales , Canal Liberador de Calcio Receptor de Rianodina/genética , Polimorfismo de Nucleótido Simple , Endogamia , Genotipo , Homocigoto , Selección Genética
15.
Front Genet ; 13: 871516, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35692822

RESUMEN

Backfat is an important trait in pork production, and it has been included in the breeding objectives of genetic companies for decades. Although adipose tissue is a good energy storage, excessive fat results in reduced efficiency and economical losses. A large QTL for backfat thickness on chromosome 5 is still segregating in different commercial pig breeds. We fine mapped this QTL region using a genome-wide association analysis (GWAS) with 133,358 genotyped animals from five commercial populations (Landrace, Pietrain, Large White, Synthetic, and Duroc) imputed to the porcine 660K SNP chip. The lead SNP was located at 5:66103958 (G/A) within the third intron of the CCND2 gene, with the G allele associated with more backfat, while the A allele is associated with less backfat. We further phased the QTL region to discover a core haplotype of five SNPs associated with low backfat across three breeds. Linkage disequilibrium analysis using whole-genome sequence data revealed three candidate causal variants within intronic regions and downstream of the CCND2 gene, including the lead SNP. We evaluated the association of the lead SNP with the expression of the genes in the QTL region (including CCND2) in a large cohort of 100 crossbred samples, sequenced in four different tissues (lung, spleen, liver, muscle). Results show that the A allele increases the expression of CCND2 in an additive way in three out of four tissues. Our findings indicate that the causal variant for this QTL region is a regulatory variant within the third intron of the CCND2 gene affecting the expression of CCND2.

16.
Mol Biol Evol ; 39(6)2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35642310

RESUMEN

It is largely unknown how mammalian genomes evolve under rapid speciation and environmental adaptation. An excellent model for understanding fast evolution is provided by the genus Sus, which diverged relatively recently and lacks postzygotic isolation. Here, we present a high-quality reference genome of the Visayan warty pig, which is specialized to a tropical island environment. Comparing the genome sequences and chromatin contact maps of the Visayan warty pig (Sus cebifrons) and domestic pig (Sus scrofa), we characterized the dynamics of chromosomal structure evolution during Sus speciation, revealing the similar chromosome conformation as the potential biological mechanism of frequent postdivergence hybridization among Suidae. We further investigated the different signatures of adaptive selection and domestication in Visayan warty pig and domestic pig with specific emphasize on the evolution of olfactory and gustatory genes, elucidating higher olfactory diversity in Visayan warty pig and positive and relaxed evolution of bitter and fat taste receptors, respectively, in domestic pig. Our comprehensive evolutionary and comparative genome analyses provide insight into the dynamics of genomes and how these change over relative short evolutionary times, as well as how these genomic differences encode for differences in the phenotypes.


Asunto(s)
Cromosomas , Genoma , Animales , Genómica , Sus scrofa/genética , Porcinos/genética
17.
J Anim Breed Genet ; 139(5): 556-573, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35579203

RESUMEN

In the past 50 years, there has been a steep increase in the demand for poultry products, met by increasing production along with genetic selection for improved growth, efficiency, health and reproduction. The selection tends to reduce the number and type of genetic resources contributing to the majority of production. The University of Alberta maintains 10 heritage chicken lines (Brown Leghorn (BL), Light Sussex (LS), New Hampshire (NH), Saskatchewan Barred Rock (SaskBR), Shaver Barred Rock (ShaverBR), Shaver Rhode Island Red (RIR), White Leghorn (WL) and three commercial crosses called Alberta Meat Control strains 1957 (AMC-1957), 1978 sire line (AMC-1978-20S) and 1978 dam line (AMC-1978-30D), that played a large role in the evolution of the poultry industry in Canada. Since these lines have not been subjected to the same intensive selection pressures as commercial counterparts, they may contain unique genetic variants lost in commercial lines. Thus, for conservation management of these lines, the first step is to assess their genetic diversity. 71 male samples from across 10 lines were analysed using whole-genome sequencing and patterns of genetic diversity and relatedness among these lines were explored. AMC-1978-30D showed the highest genetic diversity as reflected in observed and expected heterozygosity (0.327 and 0.250), percentage of polymorphic markers (~ 65%) and average recent inbreeding coefficient (-0.039), followed by AMC-1978-20S and AMC-1957. BL showed the lowest genetic diversity as reflected in observed and expected heterozygosity (0.130 and 0.116), percentage of polymorphic markers (~31%) and average recent inbreeding coefficient (0.577), followed by LS, WL and NH. Our findings highlight the need for special attention for the populations of BL, WL, LS and NH, with the largest levels of inbreeding. Our results can be used to develop a breeding strategy to optimize and conserve the genetic variation present in heritage lines.


Asunto(s)
Pollos , Variación Genética , Animales , Canadá , Pollos/genética , Genoma , Genómica , Masculino
18.
Gigascience ; 122022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-37489751

RESUMEN

BACKGROUND: The domesticated turkey (Meleagris gallopavo) is a species of significant agricultural importance and is the second largest contributor, behind broiler chickens, to world poultry meat production. The previous genome is of draft quality and partly based on the chicken (Gallus gallus) genome. A high-quality reference genome of M. gallopavo is essential for turkey genomics and genetics research and the breeding industry. RESULTS: By adopting the trio-binning approach, we were able to assemble a high-quality chromosome-level F1 assembly and 2 parental haplotype assemblies, leveraging long-read technologies and genome-wide chromatin interaction data (Hi-C). From a total of 40 chromosomes (2n = 80), we captured 35 chromosomes in a single scaffold, showing much improved genome completeness and continuity compared to the old assembly build. The 3 assemblies are of higher quality than the previous draft quality assembly and comparable to the chicken assemblies (GRCg7) shown by the largest contig N50 (26.6 Mb) and comparable BUSCO gene set completeness scores (96-97%). Comparative analyses confirm a previously identified large inversion of around 19 Mbp on the Z chromosome not found in other Galliformes. Structural variation between the parent haplotypes was identified, which poses potential new target genes for breeding. CONCLUSIONS: We contribute a new high-quality turkey genome at the chromosome level, benefiting turkey genetics and other avian genomics research as well as the turkey breeding industry.


Asunto(s)
Pollos , Galliformes , Animales , Haplotipos , Genómica , Cromatina
19.
Vet Comp Oncol ; 20(1): 227-234, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34464021

RESUMEN

Thyroid carcinomas (TCs) originating from follicular cells of the thyroid gland occur in both humans and dogs, and they have highly similar histomorphologic patterns. In dogs, TCs have not been extensively investigated, especially concerning the familial origin of TCs. Here, we report familial thyroid follicular cell carcinomas (FCCs) confirmed by histology in 54 Dutch origin German longhaired pointers. From the pedigree, 45 of 54 histopathologically confirmed cases are closely related to a pair of first-half cousins in the past, indicating a familial disease. In addition, genetics contributed more to the thyroid FCC than other factors by an estimated heritability of 0.62 based on pedigree. The age of diagnosis ranged between 4.5 and 13.5 years, and 76% of cases were diagnosed before 10 years of age, implying an early onset of disease. We observed a significant higher pedigree-based inbreeding coefficient in the affected dogs (mean F, 0.23) compared to unaffected dogs (mean F, 0.14), suggesting the contribution of inbreeding to tumour development. The unique occurrence of familial thyroid FCC in this dog population and the large number of affected dogs make this population an important model to identify the genetic basis of familial thyroid FCC in this breed and may contribute to the research into pathogenesis, prevention and treatment in humans.


Asunto(s)
Adenocarcinoma Folicular , Enfermedades de los Perros , Neoplasias de la Tiroides , Adenocarcinoma Folicular/genética , Adenocarcinoma Folicular/patología , Adenocarcinoma Folicular/veterinaria , Animales , Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/genética , Enfermedades de los Perros/patología , Perros , Endogamia , Linaje , Neoplasias de la Tiroides/epidemiología , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/veterinaria
20.
Front Genet ; 12: 723519, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34567076

RESUMEN

Background: The liver is the central metabolic organ of animals. In chicken, knowledge on the relationship between gene expression in the liver and fat deposition during development is still limited. A time-course transcriptomic study from the embryonic (day 12) to the egg-producing period (day 180 after hatch) was performed to profile slow-growing meat type chicken liver gene expression and to investigate its correlation with abdominal fat deposition. Results: The transcriptome profiles showed a separation of the different developmental stages. In total, 13,096 genes were ubiquitously expressed at all the tested developmental stages. The analysis of differentially expressed genes between adjacent developmental stages showed that biosynthesis of unsaturated fatty acids pathway was enriched from day 21 to day 140 after hatch. The correlation between liver gene expression and the trait abdominal fat weight (AFW) was analyzed by weighted gene co-expression network analysis. The genes MFGE8, HHLA1, CKAP2, and ACSBG2 were identified as hub genes in AFW positively correlated modules, which suggested important roles of these genes in the lipid metabolism in chicken liver. Conclusion: Our results provided a resource of developmental transcriptome profiles in chicken liver and suggested that the gene ACSBG2 among other detected genes can be used as a candidate gene for selecting low AFW chickens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...