Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Med Phys ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38478014

RESUMEN

BACKGROUND: Monte Carlo simulations have been considered for a long time the gold standard for dose calculations in conventional radiotherapy and are currently being applied for the same purpose in innovative radiotherapy techniques such as targeted radionuclide therapy (TRT). PURPOSE: We present in this work a benchmarking study of the latest version of the Transport d'Ions Lourds Dans l'Aqua & Vivo (TILDA-V ) Monte Carlo track structure code, highlighting its capabilities for describing the full slowing down of α $\alpha$ -particles in water and the energy deposited in cells by α $\alpha$ -emitters in the context of TRT. METHODS: We performed radiation transport simulations of α $\alpha$ -particles (10 keV u - 1 ${\rm u}^{-1}$ -100 MeV u - 1 ${\rm u}^{-1}$ ) in water with TILDA-V and the Particle and Heavy Ion Transport code System (PHITS) version 3.33. We compared the predictions of each code in terms of track parameters (stopping power, range and radial dose profiles) and cellular S-values of the promising radionuclide astatine-211 ( 211 At $^{211}{\rm At}$ ). Additional comparisons were made with available data in the literature. RESULTS: The stopping power, range and radial dose profiles of α $\alpha$ -particles computed with TILDA-V were in excellent agreement with other calculations and available data. Overall, minor differences with PHITS were ascribed to phase effects, that is, related to the use of interaction cross sections computed for water vapor or liquid water. However, important discrepancies were observed in the radial dose profiles of monoenergetic α $\alpha$ -particles, for which PHITS results showed a large underestimation of the absorbed dose compared to other codes and experimental data. The cellular S-values of 211 At $^{211}{\rm At}$ computed with TILDA-V  agreed within 4% with the values predicted by PHITS and MIRDcell. CONCLUSIONS: The validation of the TILDA-V code presented in this work opens the possibility to use it as an accurate simulation tool for investigating the interaction of α $\alpha$ -particles in biological media down to the nanometer scale in the context of medical research. The code may help nuclear medicine physicians in their choice of α $\alpha$ -emitters for TRT. Further research will focus on the application of TILDA-V for quantifying radioinduced damage on the deoxyribonucleic acid (DNA) molecule.

2.
Phys Chem Chem Phys ; 23(34): 19032-19042, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34612441

RESUMEN

The very wide range of applications of LTA zeolites, including the storage of tritiated water, implies that a detailed and accurate atomic-scale description of the adsorption processes taking place in their structure is crucial. To unravel with an unprecedented accuracy the mechanisms behind the water filling in NaA, we have conducted a systematic ab initio molecular dynamics investigation. Two LTA structural models, the conventional Z4A and the reduced one ZK4, have been used for static and dynamic ab initio calculations, respectively. After assessing this reduced model with comparative static DFT calculations, we start the filling of the α and ß cages by water, molecule by molecule. This allowed us to thoroughly study the interaction of water molecules with the zeolite structure and between water molecules, progressively forming H-bond chains and ring patterns as the cage is being filled. The adsorption energies could then be calculated with an unprecedented accuracy, which showed that the interaction of the molecules with the zeolite weakens as their number increases. By these methods, we have been able to highlight the primary role of Na+ cations in the interaction of water with zeolite, and inversely, the role of water in the displacement of cations when it is sufficiently solvated, allowing the passage between the α and ß cages. This phenomenon is possible thanks to the inhomogeneous distribution of water molecules on the cationic sites, as shown by our AIMD simulations, which allows the formation of water clusters. These results are important because they help in understanding how the coverage of cationic sites by water will affect the adsorption of other molecules inside the Na-LTA zeolite.

3.
Int J Radiat Oncol Biol Phys ; 95(1): 139-146, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-27084635

RESUMEN

PURPOSE: Particle therapy using carbon ions (C-ions) has been successfully used in the treatment of tumors resistant to conventional radiation therapy. However, the potential side effects to healthy cartilage exposed to lower linear energy transfer (LET) ions in the beam track before the tumor have not been evaluated. The aim of the present study was to assess the extent of damage after C-ion irradiation in a 3-dimensional (3D) cartilage model close to human homeostasis. METHODS AND MATERIALS: Primary human articular chondrocytes from a healthy donor were cultured in a collagen scaffold to construct a physioxic 3D cartilage model. A 2-dimensional (2D) culture was used as a reference. The cells were irradiated with a single dose of a monoenergetic C-ion beam with a LET of approximatively 30 keV/µm. This LET corresponds to the entrance channel of C-ions in the shallow healthy tissues before the spread-out Bragg peak (∼100 keV/µm) during hadron therapy protocols. The same dose of X-rays was used as a reference. Survival, cell death, and senescence assays were performed. RESULTS: As expected, in the 2D culture, C-ions were more efficient than X-rays in reducing cell survival with a relative biological effectiveness of 2.6. This correlated with stronger radiation-induced senescence (two-fold) but not with higher cell death induction. This differential effect was not reflected in the 3D culture. Both ionizing radiation types induced a comparable rate of senescence induction in the 3D model. CONCLUSIONS: The greater biological effectiveness of C-ions compared with low LET radiation when evaluated in treatment planning systems might be misevaluated using 2D culture experiments. Radiation-induced senescence is an important factor of potential cartilage attrition. The present data should encourage the scientific community to use relevant models and beams to improve the use of charged particles with better safety for patients.


Asunto(s)
Cartílago/efectos de la radiación , Senescencia Celular , Condrocitos/efectos de la radiación , Radioterapia de Iones Pesados/efectos adversos , Transferencia Lineal de Energía , Traumatismos por Radiación/complicaciones , Efectividad Biológica Relativa , Neoplasias Óseas/radioterapia , Carbono , Cartílago/citología , Técnicas de Cultivo de Célula , Muerte Celular , Supervivencia Celular/efectos de la radiación , Células Cultivadas , Condrosarcoma/radioterapia , Radioterapia de Iones Pesados/métodos , Humanos , Rayos X
4.
BMC Cancer ; 15: 579, 2015 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-26253487

RESUMEN

BACKGROUND: The benefit of better ballistic and higher efficiency of carbon ions for cancer treatment (hadron-therapy) is asserted since decades, especially for unresectable or resistant tumors like sarcomas. However, hadron-therapy with carbon ions stays underused and raises some concerns about potential side effects for patients. Chondrosarcoma is a cartilaginous tumor, chemo- and radiation-resistant, that lacks reference models for basic and pre-clinical studies in radiation-biology. Most studies about cellular effects of ionizing radiation, including hadrons, were performed under growth conditions dramatically different from human homeostasis. Tridimensional in vitro models are a fair alternative to animal models to approach tissue and tumors microenvironment. METHODS: By using a collagen matrix, standardized culture conditions, physiological oxygen tension and a well defined chondrosarcoma cell line, we developed a pertinent in vitro 3D model for hadron-biology studies. Low- and high-Linear Energy Transfer (LET) ionizing radiations from GANIL facilities of ~1 keV/µm and 103 ± 4 keV/µm were used respectively, at 2 Gy single dose. The impact of radiation quality on chondrosarcoma cells cultivated in 3D was analyzed on cell death, cell proliferation and DNA repair. RESULTS: A fair distribution of chondrosarcoma cells was observed in the whole 3D scaffold. Moreover, LET distribution in depth, for ions, was calculated and found acceptable for radiation-biology studies using this kind of scaffold. No difference in cell toxicity was observed between low- and high-LET radiations but a higher rate of proliferation was displayed following high-LET irradiation. Furthermore, 3D models presented a higher and longer induction of H2AX phosphorylation after 2 Gy of high-LET compared to low-LET radiations. CONCLUSIONS: The presented results show the feasibility and usefulness of our 3D chondrosarcoma model in the study of the impact of radiation quality on cell fate. The observed changes in our tissue-like model after ionizing radiation exposure may explain some discrepancies between radiation-biology studies and clinical data.


Asunto(s)
Técnicas de Cultivo de Célula , Condrosarcoma/patología , Técnicas In Vitro , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Condrosarcoma/radioterapia , Reparación del ADN , Histonas/metabolismo , Humanos , Ratones , Dosis de Radiación , Radiación Ionizante , Radioterapia/métodos , Radioterapia/normas
5.
Radiat Res ; 179(4): 444-57, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23465079

RESUMEN

The induction of nontargeted stressful effects in cell populations exposed to low fluences of high charge (Z) and high energy (E) particles is relevant to estimates of the health risks of space radiation. We investigated the up-regulation of stress markers in confluent normal human fibroblast cultures exposed to 1,000 MeV/u iron ions [linear energy transfer (LET) ∼151 keV/µm] or 600 MeV/u silicon ions (LET ∼50 keV/µm) at mean absorbed doses as low as 0.2 cGy, wherein 1-3% of the cells were targeted through the nucleus by a primary particle. Within 24 h postirradiation, significant increases in the levels of phospho-TP53 (serine 15), p21(Waf1) (CDKN1A), HDM2, phospho-ERK1/2, protein carbonylation and lipid peroxidation were detected, which suggested participation in the stress response of cells not targeted by primary particles. This was supported by in situ studies that indicated greater increases in 53BP1 foci formation, a marker of DNA damage. than expected from the number of primary particle traversals. The effect was expressed as early as 15 min after exposure, peaked at 1 h and decreased by 24 h. A similar tendency occurred after exposure of the cell cultures to 0.2 cGy of 3.7 MeV α particles (LET ∼109 keV/µm) that targets ∼1.6% of nuclei, but not after 0.2 cGy from 290 MeV/u carbon ions (LET ∼13 keV/µm) by which, on average, ∼13% of the nuclei were hit, which highlights the importance of radiation quality in the induced effect. Simulations with the FLUKA multi-particle transport code revealed that fragmentation products, other than electrons, in cell cultures exposed to HZE particles comprise <1% of the absorbed dose. Further, the radial spread of dose due to secondary heavy ion fragments is confined to approximately 10-20 µm. Thus, the latter are unlikely to significantly contribute to stressful effects in cells not targeted by primary HZE particles.


Asunto(s)
Radiación Cósmica , Fibroblastos/efectos de la radiación , Células Cultivadas , Daño del ADN , Humanos , Cinética , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...