Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 21(5): e3002126, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37205722

RESUMEN

The superior colliculus (SC), a conserved midbrain node with extensive long-range connectivity throughout the brain, is a key structure for innate behaviors. Descending cortical pathways are increasingly recognized as central control points for SC-mediated behaviors, but how cortico-collicular pathways coordinate SC activity at the cellular level is poorly understood. Moreover, despite the known role of the SC as a multisensory integrator, the involvement of the SC in the somatosensory system is largely unexplored in comparison to its involvement in the visual and auditory systems. Here, we mapped the connectivity of the whisker-sensitive region of the SC in mice with trans-synaptic and intersectional tracing tools and in vivo electrophysiology. The results reveal a novel trans-collicular connectivity motif in which neurons in motor- and somatosensory cortices impinge onto the brainstem-SC-brainstem sensory-motor arc and onto SC-midbrain output pathways via only one synapse in the SC. Intersectional approaches and optogenetically assisted connectivity quantifications in vivo reveal convergence of motor and somatosensory cortical input on individual SC neurons, providing a new framework for sensory-motor integration in the SC. More than a third of the cortical recipient neurons in the whisker SC are GABAergic neurons, which include a hitherto unknown population of GABAergic projection neurons targeting thalamic nuclei and the zona incerta. These results pinpoint a whisker region in the SC of mice as a node for the integration of somatosensory and motor cortical signals via parallel excitatory and inhibitory trans-collicular pathways, which link cortical and subcortical whisker circuits for somato-motor integration.


Asunto(s)
Corteza Motora , Vibrisas , Ratones , Animales , Vibrisas/fisiología , Neuronas/fisiología , Colículos Superiores/fisiología , Corteza Motora/fisiología , Encéfalo , Corteza Somatosensorial/fisiología
2.
Nat Commun ; 14(1): 2999, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37225702

RESUMEN

The primary somatosensory cortex (S1) is a hub for body sensation of both innocuous and noxious signals, yet its role in somatosensation versus pain is debated. Despite known contributions of S1 to sensory gain modulation, its causal involvement in subjective sensory experiences remains elusive. Here, in mouse S1, we reveal the involvement of cortical output neurons in layers 5 (L5) and 6 (L6) in the perception of innocuous and noxious somatosensory signals. We find that L6 activation can drive aversive hypersensitivity and spontaneous nocifensive behavior. Linking behavior to neuronal mechanisms, we find that L6 enhances thalamic somatosensory responses, and in parallel, strongly suppresses L5 neurons. Directly suppressing L5 reproduced the pronociceptive phenotype induced by L6 activation, suggesting an anti-nociceptive function for L5 output. Indeed, L5 activation reduced sensory sensitivity and reversed inflammatory allodynia. Together, these findings reveal a layer-specific and bidirectional role for S1 in modulating subjective sensory experiences.


Asunto(s)
Afecto , Corteza Somatosensorial , Animales , Ratones , Hiperalgesia , Neuronas , Dolor
3.
Science ; 378(6626): 1336-1343, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36548429

RESUMEN

The primary motor cortex (M1) is involved in the control of voluntary movements and is extensively mapped in this capacity. Although the M1 is implicated in modulation of pain, the underlying circuitry and causal underpinnings remain elusive. We unexpectedly unraveled a connection from the M1 to the nucleus accumbens reward circuitry through a M1 layer 6-mediodorsal thalamus pathway, which specifically suppresses negative emotional valence and associated coping behaviors in neuropathic pain. By contrast, layer 5 M1 neurons connect with specific cell populations in zona incerta and periaqueductal gray to suppress sensory hypersensitivity without altering pain affect. Thus, the M1 employs distinct, layer-specific pathways to attune sensory and aversive-emotional components of neuropathic pain, which can be exploited for purposes of pain relief.


Asunto(s)
Corteza Motora , Vías Nerviosas , Neuralgia , Corteza Motora/citología , Corteza Motora/fisiología , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Neuralgia/fisiopatología , Neuronas/fisiología , Sustancia Gris Periacueductal/citología , Sustancia Gris Periacueductal/fisiología , Tálamo/citología , Tálamo/fisiología , Animales , Ratones
4.
Neuroscience ; 387: 58-71, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28978414

RESUMEN

The transmission of noxious stimuli from peripheral receptors to the cortex involves multiple central ascending pathways. While projections to areas in the brainstem and diencephalon are likely involved in mediating the immediate behavioral responses to pain, the assessment of the sensory and emotional/motivational components of pain are likely processed in parallel ascending pathways that relay in the thalamus on their way to the cerebral cortex. In this review we discuss experimental animal and human findings that support the view that a lateral thalamocortical pathway is involved in coding the sensory discriminative aspects of pain, while a medial thalamocortical pathway codes the emotional qualities of pain. In addition, we outline experimental animal and human evidence of functional, anatomical and biochemical alterations in thalamocortical circuits that may be responsible for altered thalamocortical rhythms and the persistent presence of pain following nervous system damage. Finally, we discuss advances in clinical and preclinical development of chronic pain treatments aimed at altering neural and glial function.


Asunto(s)
Corteza Cerebral/fisiología , Dolor Crónico/fisiopatología , Manejo del Dolor/métodos , Dolor/fisiopatología , Tálamo/fisiología , Animales , Modelos Animales de Enfermedad , Humanos
5.
Proc Natl Acad Sci U S A ; 114(33): 8853-8858, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28774955

RESUMEN

Neurons in cortical layer 5B (L5B) connect the cortex to numerous subcortical areas. Possibly the best-studied L5B cortico-subcortical connection is that between L5B neurons in the rodent barrel cortex (BC) and the posterior medial nucleus of the thalamus (POm). However, the spatial organization of L5B giant boutons in the POm and other subcortical targets is not known, and therefore it is unclear if this descending pathway retains somatotopy, i.e., body map organization, a hallmark of the ascending somatosensory pathway. We investigated the organization of the descending L5B pathway from the BC by dual-color anterograde labeling. We reconstructed and quantified the bouton clouds originating from adjacent L5B columns in the BC in three dimensions. L5B cells target six nuclei in the anterior midbrain and thalamus, including the posterior thalamus, the zona incerta, and the anterior pretectum. The L5B subcortical innervation is target specific in terms of bouton numbers, density, and projection volume. Common to all target nuclei investigated here is the maintenance of projection topology from different barrel columns in the BC, albeit with target-specific precision. We estimated low cortico-subcortical convergence and divergence, demonstrating that the L5B corticothalamic pathway is sparse and highly parallelized. Finally, the spatial organization of boutons and whisker map organization revealed the subdivision of the posterior group of the thalamus into four subnuclei (anterior, lateral, medial, and posterior). In conclusion, corticofugal L5B neurons establish a widespread cortico-subcortical network via sparse and somatotopically organized parallel pathways.


Asunto(s)
Mesencéfalo , Red Nerviosa , Neuronas , Tálamo , Animales , Mesencéfalo/citología , Mesencéfalo/fisiología , Ratones , Red Nerviosa/citología , Red Nerviosa/fisiología , Neuronas/citología , Neuronas/fisiología , Tálamo/citología , Tálamo/fisiología
6.
Cell Rep ; 19(6): 1130-1140, 2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28494863

RESUMEN

High-frequency "burst" clusters of spikes are a generic output pattern of many neurons. While bursting is a ubiquitous computational feature of different nervous systems across animal species, the encoding of synaptic inputs by bursts is not well understood. We find that bursting neurons in the rodent thalamus employ "multiplexing" to differentially encode low- and high-frequency stimulus features associated with either T-type calcium "low-threshold" or fast sodium spiking events, respectively, and these events adapt differently. Thus, thalamic bursts encode disparate information in three channels: (1) burst size, (2) burst onset time, and (3) precise spike timing within bursts. Strikingly, this latter "intraburst" encoding channel shows millisecond-level feature selectivity and adapts across statistical contexts to maintain stable information encoded per spike. Consequently, calcium events both encode low-frequency stimuli and, in parallel, gate a transient window for high-frequency, adaptive stimulus encoding by sodium spike timing, allowing bursts to efficiently convey fine-scale temporal information.


Asunto(s)
Adaptación Fisiológica , Potenciales Sinápticos , Tálamo/fisiología , Potenciales de Acción , Animales , Calcio/metabolismo , Canales de Calcio Tipo T/metabolismo , Femenino , Masculino , Ratones , Neuronas/metabolismo , Neuronas/fisiología , Ratas , Ratas Wistar , Sodio/metabolismo , Tálamo/citología
7.
Cereb Cortex ; 26(8): 3534-43, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27230219

RESUMEN

Cortical layer 5B (L5B) thick-tufted pyramidal neurons have reliable responses to whisker stimulation in anesthetized rodents. These cells drive a corticothalamic pathway that evokes spikes in thalamic posterior medial nucleus (POm). While a subset of POm has been shown to integrate both cortical L5B and paralemniscal signals, the majority of POm neurons are suggested to receive driving input from L5B only. Here, we test this possibility by investigating the origin of whisker-evoked responses in POm and specifically the contribution of the L5B-POm pathway. We compare L5B spiking with POm spiking and subthreshold responses to whisker deflections in urethane anesthetized mice. We find that a subset of recorded POm neurons shows early (<50 ms) spike responses and early large EPSPs. In these neurons, the early large EPSPs matched L5B input criteria, were blocked by cortical inhibition, and also interacted with spontaneous Up state coupled large EPSPs. This result supports the view of POm subdivisions, one of which receives whisker signals predominantly via L5B neurons.


Asunto(s)
Células Piramidales/fisiología , Corteza Somatosensorial/fisiología , Tálamo/fisiología , Percepción del Tacto/fisiología , Vibrisas/fisiología , Potenciales de Acción , Animales , Potenciales Postsinápticos Excitadores , Ratones Transgénicos , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Optogenética , Células Piramidales/citología , Corteza Somatosensorial/citología , Tálamo/citología
8.
Cereb Cortex ; 26(8): 3461-75, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27178196

RESUMEN

The cortex connects to the thalamus via extensive corticothalamic (CT) pathways, but their function in vivo is not well understood. We investigated "top-down" signaling from cortex to thalamus via the cortical layer 5B (L5B) to posterior medial nucleus (POm) pathway in the whisker system of the anesthetized mouse. While L5B CT inputs to POm are extremely strong in vitro, ongoing activity of L5 neurons in vivo might tonically depress these inputs and thereby block CT spike transfer. We find robust transfer of spikes from the cortex to the thalamus, mediated by few L5B-POm synapses. However, the gain of this pathway is not constant but instead is controlled by global cortical Up and Down states. We characterized in vivo CT spike transfer by analyzing unitary PSPs and found that a minority of PSPs drove POm spikes when CT gain peaked at the beginning of Up states. CT gain declined sharply during Up states due to frequency-dependent adaptation, resulting in periodic high gain-low gain oscillations. We estimate that POm neurons receive few (2-3) active L5B inputs. Thus, the L5B-POm pathway strongly amplifies the output of a few L5B neurons and locks thalamic POm sub-and suprathreshold activity to cortical L5B spiking.


Asunto(s)
Neuronas/fisiología , Corteza Somatosensorial/fisiología , Tálamo/fisiología , Potenciales de Acción , Anestesia , Animales , Simulación por Computador , Potenciales Postsinápticos Excitadores , Agonistas de Receptores de GABA-A/farmacología , Ratones Transgénicos , Microelectrodos , Modelos Neurológicos , Muscimol/farmacología , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Técnicas de Trazados de Vías Neuroanatómicas , Neuronas/citología , Optogenética , Corteza Somatosensorial/citología , Corteza Somatosensorial/efectos de los fármacos , Tálamo/citología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , Vibrisas/inervación , Vibrisas/fisiología
9.
Cell Rep ; 14(2): 208-15, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26748702

RESUMEN

In the mammalian brain, thalamic signals reach the cortex via two major routes: primary and higher-order thalamocortical pathways. While primary thalamocortical nuclei transmit sensory signals from the periphery, the function of higher-order thalamocortical projections remains enigmatic, in particular their role in sensory processing in the cortex. Here, by optogenetically controlling the thalamocortical pathway from the higher-order posteromedial thalamic nucleus (POm) during whisker stimulation, we demonstrate the integration of the two thalamocortical streams by single pyramidal neurons in layer 5 (L5) of the mouse barrel cortex under anesthesia. We report that POm input mainly enhances sub- and suprathreshold activity via net depolarization. Sensory enhancement is accompanied by prolongation of cortical responses over long (800-ms) periods after whisker stimulation. Thus, POm amplifies and temporally sustains cortical sensory signals, possibly serving to accentuate highly relevant sensory information.


Asunto(s)
Corteza Cerebral/fisiología , Neuronas/fisiología , Corteza Somatosensorial/metabolismo , Tálamo/metabolismo , Animales , Ratones
10.
Proc Natl Acad Sci U S A ; 111(18): 6798-803, 2014 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24748112

RESUMEN

A major synaptic input to the thalamus originates from neurons in cortical layer 6 (L6); however, the function of this cortico-thalamic pathway during sensory processing is not well understood. In the mouse whisker system, we found that optogenetic stimulation of L6 in vivo results in a mixture of hyperpolarization and depolarization in the thalamic target neurons. The hyperpolarization was transient, and for longer L6 activation (>200 ms), thalamic neurons reached a depolarized resting membrane potential which affected key features of thalamic sensory processing. Most importantly, L6 stimulation reduced the adaptation of thalamic responses to repetitive whisker stimulation, thereby allowing thalamic neurons to relay higher frequencies of sensory input. Furthermore, L6 controlled the thalamic response mode by shifting thalamo-cortical transmission from bursting to single spiking. Analysis of intracellular sensory responses suggests that L6 impacts these thalamic properties by controlling the resting membrane potential and the availability of the transient calcium current IT, a hallmark of thalamic excitability. In summary, L6 input to the thalamus can shape both the overall gain and the temporal dynamics of sensory responses that reach the cortex.


Asunto(s)
Corteza Cerebral/fisiología , Tálamo/fisiología , Potenciales de Acción , Adaptación Fisiológica , Vías Aferentes/fisiología , Animales , Señalización del Calcio , Femenino , Masculino , Potenciales de la Membrana , Ratones , Optogenética/métodos , Estimulación Física , Células Receptoras Sensoriales/fisiología , Vibrisas/inervación
11.
Cereb Cortex ; 24(12): 3167-79, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23825316

RESUMEN

Ascending and descending information is relayed through the thalamus via strong, "driver" pathways. According to our current knowledge, different driver pathways are organized in parallel streams and do not interact at the thalamic level. Using an electron microscopic approach combined with optogenetics and in vivo physiology, we examined whether driver inputs arising from different sources can interact at single thalamocortical cells in the rodent somatosensory thalamus (nucleus posterior, POm). Both the anatomical and the physiological data demonstrated that ascending driver inputs from the brainstem and descending driver inputs from cortical layer 5 pyramidal neurons converge and interact on single thalamocortical neurons in POm. Both individual pathways displayed driver properties, but they interacted synergistically in a time-dependent manner and when co-activated, supralinearly increased the output of thalamus. As a consequence, thalamocortical neurons reported the relative timing between sensory events and ongoing cortical activity. We conclude that thalamocortical neurons can receive 2 powerful inputs of different origin, rather than only a single one as previously suggested. This allows thalamocortical neurons to integrate raw sensory information with powerful cortical signals and transfer the integrated activity back to cortical networks.


Asunto(s)
Corteza Cerebral/citología , Vías Nerviosas/fisiología , Neuronas/fisiología , Sinapsis/metabolismo , Tálamo/citología , Animales , Biotina/análogos & derivados , Channelrhodopsins , Dextranos , Potenciales Postsinápticos Excitadores/fisiología , Lateralidad Funcional , Masculino , Potenciales de la Membrana/fisiología , Ratones , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Neuronas/ultraestructura , Técnicas de Placa-Clamp , Fitohemaglutininas , Ratas , Ratas Wistar , Sinapsis/ultraestructura , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
12.
Cold Spring Harb Protoc ; 2013(10): 961-9, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24086056

RESUMEN

Morphological and functional classification of individual neurons is a crucial aspect of the characterization of neuronal networks. Systematic structural and functional analysis of individual neurons is now possible using transgenic mice with genetically defined neurons that can be visualized in vivo or in brain slice preparations. Genetically defined neurons are useful for studying a particular class of neurons and also for more comprehensive studies of the neuronal content of a network. Specific subsets of neurons can be identified by fluorescence imaging of enhanced green fluorescent protein (eGFP) or another fluorophore expressed under the control of a cell-type-specific promoter. The advantages of such genetically defined neurons are not only their homogeneity and suitability for systematic descriptions of networks, but also their tremendous potential for cell-type-specific manipulation of neuronal networks in vivo. This article describes a selection of procedures for visualizing and studying the anatomy and physiology of genetically defined neurons in transgenic mice. We provide information about basic equipment, reagents, procedures, and analytical approaches for obtaining three-dimensional (3D) cell morphologies and determining the axonal input and output of genetically defined neurons. We exemplify with genetically labeled cortical neurons, but the procedures are applicable to other brain regions with little or no alterations.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/citología , Técnicas Citológicas/métodos , Neuronas/citología , Neuronas/fisiología , Imagen Óptica/métodos , Animales , Imagenología Tridimensional , Ratones , Ratones Transgénicos
13.
Neuron ; 77(6): 1136-50, 2013 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-23522048

RESUMEN

Corticothalamic slow oscillations of neuronal activity determine internal brain states. At least in the cortex, the electrical activity is associated with large neuronal Ca(2+) transients. Here we implemented an optogenetic approach to explore causal features of the generation of slow oscillation-associated Ca(2+) waves in the in vivo mouse brain. We demonstrate that brief optogenetic stimulation (3-20 ms) of a local group of layer 5 cortical neurons is sufficient for the induction of global brain Ca(2+) waves. These Ca(2+) waves are evoked in an all-or-none manner, exhibit refractoriness during repetitive stimulation, and propagate over long distances. By local optogenetic stimulation, we demonstrate that evoked Ca(2+) waves initially invade the cortex, followed by a secondary recruitment of the thalamus. Together, our results establish that synchronous activity in a small cluster of layer 5 cortical neurons can initiate a global neuronal wave of activity suited for long-range corticothalamic integration.


Asunto(s)
Señalización del Calcio/fisiología , Tálamo/fisiología , Corteza Visual/fisiología , Animales , Corteza Cerebral/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Vías Nerviosas/fisiología , Optogenética/métodos , Estimulación Luminosa/métodos
14.
Cereb Cortex ; 20(4): 826-36, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19643810

RESUMEN

To understand sensory representation in cortex, it is crucial to identify its constituent cellular components based on cell-type-specific criteria. With the identification of cell types, an important question can be addressed: to what degree does the cellular properties of neurons depend on cortical location? We tested this question using pyramidal neurons in layer 5 (L5) because of their role in providing major cortical output to subcortical targets. Recently developed transgenic mice with cell-type-specific enhanced green fluorescent protein labeling of neuronal subtypes allow reliable identification of 2 cortical cell types in L5 throughout the entire neocortex. A comprehensive investigation of anatomical and functional properties of these 2 cell types in visual and somatosensory cortex demonstrates that, with important exceptions, most properties appear to be cell-type-specific rather than dependent on cortical area. This result suggests that although cortical output neurons share a basic layout throughout the sensory cortex, fine differences in properties are tuned to the cortical area in which neurons reside.


Asunto(s)
Fenómenos Biofísicos/fisiología , Neocórtex/citología , Células Piramidales/fisiología , Corteza Somatosensorial/fisiología , Análisis de Varianza , Animales , Recuento de Células/métodos , Toxina del Cólera/metabolismo , Dendritas/fisiología , Estimulación Eléctrica/métodos , Potenciales Postsinápticos Excitadores/genética , Galactosiltransferasas/genética , Galactosiltransferasas/metabolismo , Glutamato Descarboxilasa/metabolismo , Proteínas Fluorescentes Verdes/genética , Técnicas In Vitro , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Vías Nerviosas/fisiología , Técnicas de Placa-Clamp/métodos , Fosfopiruvato Hidratasa/metabolismo , Proteína Proto-Oncogénica c-ets-1/metabolismo , Células Piramidales/citología , Corteza Somatosensorial/citología , Tálamo/citología , Tálamo/fisiología
15.
J Neurosci ; 28(39): 9652-63, 2008 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-18815251

RESUMEN

Giant synapses between layer 5B (L5B) neurons of somatosensory (barrel) cortex and neurons of the posteromedial nucleus (POm) of thalamus reside in a key position of the cortico-thalamo-cortical (CTC) loop, yet their synaptic properties and contribution to CTC information processing remain poorly understood. Fluorescence-guided local stimulation of terminals were combined with postsynaptic whole-cell recordings in thalamus to study synaptic transmission at an identified giant synapse. We found large EPSCs mediated by Ca(2+)-permeable AMPA and NMDA receptors. A single presynaptic electrical stimulus evoked a train of postsynaptic action potentials, indicating that a single L5B input can effectively drive the thalamic neuron. Repetitive stimulation caused strong short-term depression (STD) with fast recovery. To examine how these synaptic properties affect information transfer, spontaneous and evoked activity of L5B neurons was recorded in vivo and played back to giant terminals in vitro. We found that suprathreshold synaptic transmission was suppressed because of spontaneous activity causing strong STD of the L5B-POm giant synapse. Thalamic neurons only spiked after intervals of presynaptic silence or when costimulating two giant terminals. Therefore, STD caused by spontaneous activity of L5B neurons can switch the synapse from a "driver mode" to a "coincidence mode." Mechanisms decreasing spontaneous activity in L5B neurons and inputs synchronized by a sensory stimulus may thus gate the cortico-thalamo-cortical loop.


Asunto(s)
Corteza Cerebral/citología , Modelos Neurológicos , Inhibición Neural/fisiología , Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Tálamo/citología , Animales , Animales Recién Nacidos , Calcio/metabolismo , Línea Celular Transformada , Relación Dosis-Respuesta en la Radiación , Estimulación Eléctrica/métodos , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Excitadores/efectos de la radiación , Humanos , Técnicas In Vitro , Sustancias Luminiscentes/metabolismo , Neuronas/fisiología , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Sinapsis/clasificación , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Transfección/métodos
16.
J Neurosci ; 26(1): 109-16, 2006 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-16399677

RESUMEN

Structural and functional properties of synapses are intricately and reciprocally coupled. To cope with the functional requirements in auditory processing, the calyx of Held developed distinct structural specializations such as a large number of active zones, large size, elaborate morphology, and defined distribution of ion channels. These specializations typically appear during postnatal maturation within the first 3 weeks of life and are accompanied by marked changes in the properties of synaptic transmission. We examined the arrangement of synaptic vesicles at different postnatal stages of maturation by genetically labeling vesicles with the fluorescent fusion protein synaptophysin-enhanced green fluorescent protein. Fluorescence and electron microscopy-based analyses revealed a new anatomical specialization in the mature calyx of Held. Within small, membrane-delimited compartments (swellings), synaptic vesicles formed donut-like assemblies around a central cluster of interconnected mitochondria. Adult calyces contained approximately 100 such structural units, each of them consisting of approximately 800 synaptic vesicles, six to nine mitochondria, and five to nine active zones. A donut of synaptic vesicles measured approximately 1 microm in diameter and was placed in a swelling with a volume of approximately 5 fl. Conspicuously, this structural specialization appears with the onset of hearing and may contribute to maturational changes in presynaptic function.


Asunto(s)
Nervio Coclear/crecimiento & desarrollo , Núcleo Coclear/crecimiento & desarrollo , Mitocondrias/fisiología , Seudópodos/fisiología , Vesículas Sinápticas/fisiología , Factores de Edad , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Tronco Encefálico/química , Tronco Encefálico/fisiología , Membrana Celular/química , Membrana Celular/fisiología , Nervio Coclear/química , Núcleo Coclear/química , Mitocondrias/química , Datos de Secuencia Molecular , Seudópodos/química , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Vesículas Sinápticas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...