Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Neurosci ; 18: 1299554, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38435059

RESUMEN

We have previously demonstrated that neuroinflammation by the adaptive immune system acts as a robust and targetable disease amplifier in a mouse model of Spastic Paraplegia, type 11 (SPG11), a complicated form of Hereditary Spastic Paraplegia (HSP). While we identified an impact of neuroinflammation on distinct neuropathological changes and gait performance, neuropsychological features, typical and clinically highly relevant symptoms of complicated HSPs, were not addressed. Here we show that the corresponding SPG11 mouse model shows distinct behavioral abnormalities, particularly related to social behavior thus partially reflecting the neuropsychological changes in patients. We provide evidence that some behavioral abnormalities can be mitigated by genetic inactivation of the adaptive immune system. Translating this into a clinically applicable approach, we show that treatment with the established immunomodulators fingolimod or teriflunomide significantly attenuates distinct behavioral abnormalities, with the most striking effect on social behavior. This study links neuroinflammation to behavioral abnormalities in a mouse model of SPG11 and may thus pave the way for using immunomodulators as a treatment approach for SPG11 and possibly other complicated forms of HSP with neuropsychological involvement.

2.
Nat Commun ; 14(1): 7529, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37981650

RESUMEN

Inflammation in the brain and gut is a critical component of several neurological diseases, such as Parkinson's disease (PD). One trigger of the immune system in PD is aggregation of the pre-synaptic protein, α-synuclein (αSyn). Understanding the mechanism of propagation of αSyn aggregates is essential to developing disease-modifying therapeutics. Using a brain-first mouse model of PD, we demonstrate αSyn trafficking from the brain to the ileum of male mice. Immunohistochemistry revealed that the ileal αSyn aggregations are contained within CD11c+ cells. Using single-cell RNA sequencing, we demonstrate that ileal CD11c+ cells are microglia-like and the same subtype of cells is activated in the brain and ileum of PD mice. Moreover, by utilizing mice expressing the photo-convertible protein, Dendra2, we show that CD11c+ cells traffic from the brain to the ileum. Together these data provide a mechanism of αSyn trafficking between the brain and gut.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Masculino , Animales , Ratones , alfa-Sinucleína/genética , Enfermedad de Parkinson/genética , Encéfalo , Modelos Animales de Enfermedad , Íleon
3.
Nat Commun ; 14(1): 6911, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37903797

RESUMEN

Axon degeneration and functional decline in myelin diseases are often attributed to loss of myelin but their relation is not fully understood. Perturbed myelinating glia can instigate chronic neuroinflammation and contribute to demyelination and axonal damage. Here we study mice with distinct defects in the proteolipid protein 1 gene that develop axonal damage which is driven by cytotoxic T cells targeting myelinating oligodendrocytes. We show that persistent ensheathment with perturbed myelin poses a risk for axon degeneration, neuron loss, and behavioral decline. We demonstrate that CD8+ T cell-driven axonal damage is less likely to progress towards degeneration when axons are efficiently demyelinated by activated microglia. Mechanistically, we show that cytotoxic T cell effector molecules induce cytoskeletal alterations within myelinating glia and aberrant actomyosin constriction of axons at paranodal domains. Our study identifies detrimental axon-glia-immune interactions which promote neurodegeneration and possible therapeutic targets for disorders associated with myelin defects and neuroinflammation.


Asunto(s)
Enfermedades Desmielinizantes , Microglía , Animales , Ratones , Axones/metabolismo , Linfocitos T CD8-positivos , Enfermedades Desmielinizantes/metabolismo , Vaina de Mielina/metabolismo , Enfermedades Neuroinflamatorias
4.
iScience ; 26(5): 106698, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37182098

RESUMEN

Myelin defects lead to neurological dysfunction in various diseases and in normal aging. Chronic neuroinflammation often contributes to axon-myelin damage in these conditions and can be initiated and/or sustained by perturbed myelinating glia. We have previously shown that distinct PLP1 mutations result in neurodegeneration that is largely driven by adaptive immune cells. Here we characterize CD8+ CNS-associated T cells in myelin mutants using single-cell transcriptomics and identify population heterogeneity and disease-associated changes. We demonstrate that early sphingosine-1-phosphate receptor modulation attenuates T cell recruitment and neural damage, while later targeting of CNS-associated T cell populations is inefficient. Applying bone marrow chimerism and utilizing random X chromosome inactivation, we provide evidence that axonal damage is driven by cytotoxic, antigen specific CD8+ T cells that target mutant myelinating oligodendrocytes. These findings offer insights into neural-immune interactions and are of translational relevance for neurological conditions associated with myelin defects and neuroinflammation.

5.
J Neuroinflammation ; 20(1): 7, 2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36611185

RESUMEN

BACKGROUND: Promotion of myelin repair in the context of demyelinating diseases such as multiple sclerosis (MS) still represents a clinical unmet need, given that this disease is not only characterized by autoimmune activities but also by impaired regeneration processes. Hence, this relates to replacement of lost oligodendrocytes and myelin sheaths-the primary targets of autoimmune attacks. Endogenous remyelination is mainly mediated via activation and differentiation of resident oligodendroglial precursor cells (OPCs), whereas its efficiency remains limited and declines with disease progression and aging. Teriflunomide has been approved as a first-line treatment for relapsing remitting MS. Beyond its role in acting via inhibition of de novo pyrimidine synthesis leading to a cytostatic effect on proliferating lymphocyte subsets, this study aims to uncover its potential to foster myelin repair. METHODS: Within the cuprizone mediated de-/remyelination model teriflunomide dependent effects on oligodendroglial homeostasis and maturation, related to cellular processes important for myelin repair were analyzed in vivo. Teriflunomide administration was performed either as pulse or continuously and markers specific for oligodendroglial maturation and mitochondrial integrity were examined by means of gene expression and immunohistochemical analyses. In addition, axon myelination was determined using electron microscopy. RESULTS: Both pulse and constant teriflunomide treatment efficiently boosted myelin repair activities in this model, leading to accelerated generation of oligodendrocytes and restoration of myelin sheaths. Moreover, teriflunomide restored mitochondrial integrity within oligodendroglial cells. CONCLUSIONS: The link between de novo pyrimidine synthesis inhibition, oligodendroglial rescue, and maintenance of mitochondrial homeostasis appears as a key for successful myelin repair and hence for protection of axons from degeneration.


Asunto(s)
Vaina de Mielina , Oligodendroglía , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Crotonatos/farmacología , Crotonatos/uso terapéutico , Hidroxibutiratos/metabolismo , Hidroxibutiratos/farmacología , Diferenciación Celular
6.
Nat Neurosci ; 25(11): 1446-1457, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36280798

RESUMEN

A hallmark of nervous system aging is a decline of white matter volume and function, but the underlying mechanisms leading to white matter pathology are unknown. In the present study, we found age-related alterations of oligodendrocyte cell state with a reduction in total oligodendrocyte density in aging murine white matter. Using single-cell RNA-sequencing, we identified interferon (IFN)-responsive oligodendrocytes, which localize in proximity to CD8+ T cells in aging white matter. Absence of functional lymphocytes decreased the number of IFN-responsive oligodendrocytes and rescued oligodendrocyte loss, whereas T-cell checkpoint inhibition worsened the aging response. In addition, we identified a subpopulation of lymphocyte-dependent, IFN-responsive microglia in the vicinity of the CD8+ T cells in aging white matter. In summary, we provide evidence that CD8+ T-cell-induced, IFN-responsive oligodendrocytes and microglia are important modifiers of white matter aging.


Asunto(s)
Microglía , Sustancia Blanca , Animales , Ratones , Linfocitos T CD8-positivos , Interferones , Oligodendroglía
7.
Exp Neurol ; 355: 114119, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35605667

RESUMEN

Pharmacological targeting of neuroinflammation in distinct models of genetically mediated disorders of the central nervous system (CNS) has been shown to attenuate disease outcome significantly. These include mouse models mimicking distinct subtypes of neuronal ceroid lipofuscinoses (NCL, CLN diseases) as well as hereditary spastic paraplegia type 2 (HSP/SPG2). We here show in a model of another, complicated HSP form (SPG11) that there is neuroinflammation in distinct compartments of the diseased CNS. Using a proof-of-principle experiment, we provide evidence that genetically targeting the adaptive immune system dampens disease progression including gait disturbance, demonstrating a pathogenic impact of neuroinflammation. Translating these studies into a clinically applicable approach, we show that the established immunomodulators fingolimod and teriflunomide significantly attenuate the neurodegenerative phenotype and improve gait performance in the SPG11 model, even when applied relatively late during disease progression. Particularly abnormalities in gait coordination, representing ataxia, could be attenuated, while features indicative of reduced strength during walking did not respond to treatment. Our study identifies neuroinflammation by the adaptive immune system as a robust and targetable disease amplifier in a mouse model of SPG11 and may thus pave the way for a translational approach in humans implicating approved immunomodulators.


Asunto(s)
Paraplejía Espástica Hereditaria , Animales , Sistema Nervioso Central/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Factores Inmunológicos/farmacología , Factores Inmunológicos/uso terapéutico , Ratones , Mutación , Proteínas/genética , Paraplejía Espástica Hereditaria/tratamiento farmacológico , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/patología , Linfocitos T/patología
8.
Glia ; 70(6): 1100-1116, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35188681

RESUMEN

We have previously shown that targeting endoneurial macrophages with the orally applied CSF-1 receptor specific kinase (c-FMS) inhibitor PLX5622 from the age of 3 months onwards led to a substantial alleviation of the neuropathy in mouse models of Charcot-Marie-Tooth (CMT) 1X and 1B disease, which are genetically-mediated nerve disorders not treatable in humans. The same approach failed in a model of CMT1A (PMP22-overexpressing mice, line C61), representing the most frequent form of CMT. This was unexpected since previous studies identified macrophages contributing to disease severity in the same CMT1A model. Here we re-approached the possibility of alleviating the neuropathy in a model of CMT1A by targeting macrophages at earlier time points. As a proof-of-principle experiment, we genetically inactivated colony-stimulating factor-1 (CSF-1) in CMT1A mice, which resulted in lower endoneurial macrophage numbers and alleviated the neuropathy. Based on these observations, we pharmacologically ablated macrophages in newborn CMT1A mice by feeding their lactating mothers with chow containing PLX5622, followed by treatment of the respective progenies after weaning until the age of 6 months. We found that peripheral neuropathy was substantially alleviated after early postnatal treatment, leading to preserved motor function in CMT1A mice. Moreover, macrophage depletion affected the altered Schwann cell differentiation phenotype. These findings underscore the targetable role of macrophage-mediated inflammation in peripheral nerves of inherited neuropathies, but also emphasize the need for an early treatment start confined to a narrow therapeutic time window in CMT1A models and potentially in respective patients.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Lactancia , Animales , Diferenciación Celular , Enfermedad de Charcot-Marie-Tooth/genética , Femenino , Humanos , Macrófagos/metabolismo , Ratones , Nervios Periféricos/metabolismo
10.
Brain Commun ; 3(2): fcab047, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33977263

RESUMEN

Targeting neuroinflammation in models for infantile and juvenile forms of neuronal ceroid lipofuscinosis (NCL, CLN disease) with the clinically established immunomodulators fingolimod and teriflunomide significantly attenuates the neurodegenerative phenotype when applied preventively, i.e. before the development of substantial neural damage and clinical symptoms. Here, we show that in a mouse model for the early onset and rapidly progressing CLN1 form, more complex clinical phenotypes like disturbed motor coordination and impaired visual acuity are also ameliorated by immunomodulation. Moreover, we show that the disease outcome can be attenuated even when fingolimod and teriflunomide treatment starts after disease onset, i.e. when neurodegeneration is ongoing and clinical symptoms are detectable. In detail, treatment with either drug led to a reduction in T-cell numbers and microgliosis in the CNS, although not to the same extent as upon preventive treatment. Pharmacological immunomodulation was accompanied by a reduction of axonal damage, neuron loss and astrogliosis in the retinotectal system and by reduced brain atrophy. Accordingly, the frequency of myoclonic jerks and disturbed motor coordination were attenuated. Overall, disease alleviation was remarkably substantial upon therapeutic treatment with both drugs, although less robust than upon preventive treatment. To test the relevance of putative immune-independent mechanisms of action in this model, we treated CLN1 mice lacking mature T- and B-lymphocytes. Immunodeficient CLN1 mice showed, as previously reported, an improved neurological phenotype in comparison with genuine CLN1 mice which could not be further alleviated by either of the drugs, reflecting a predominantly immune-related therapeutic mechanism of action. The present study supports and strengthens our previous view that repurposing clinically approved immunomodulators may alleviate the course of CLN1 disease in human patients, even though diagnosis usually occurs when symptoms have already emerged.

11.
Nat Aging ; 1(4): 357-367, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-37117598

RESUMEN

Aging is a major risk factor for the development of nervous system functional decline, even in the absence of diseases or trauma. The axon-myelin units and synaptic terminals are some of the neural structures most vulnerable to aging-related deterioration1-6, but the underlying mechanisms are poorly understood. In the peripheral nervous system, macrophages-important representatives of the innate immune system-are prominent drivers of structural and functional decline of myelinated fibers and motor endplates during aging7. Similarly, in the aging central nervous system (CNS), microglial cells promote damage of myelinated axons and synapses8-20. Here we examine the role of cytotoxic CD8+ T lymphocytes, a type of adaptive immune cells previously identified as amplifiers of axonal perturbation in various models of genetically mediated CNS diseases21 but understudied in the aging CNS22-25. We show that accumulation of CD8+ T cells drives axon degeneration in the normal aging mouse CNS and contributes to age-related cognitive and motor decline. We characterize CD8+ T-cell population heterogeneity in the adult and aged mouse brain by single-cell transcriptomics and identify aging-related changes. Mechanistically, we provide evidence that CD8+ T cells drive axon degeneration in a T-cell receptor- and granzyme B-dependent manner. Cytotoxic neural damage is further aggravated by systemic inflammation in aged but not adult mice. We also find increased densities of T cells in white matter autopsy material from older humans. Our results suggest that targeting CD8+ CNS-associated T cells in older adults might mitigate aging-related decline of brain structure and function.


Asunto(s)
Linfocitos T Citotóxicos , Sustancia Blanca , Ratones , Humanos , Animales , Anciano , Linfocitos T CD8-positivos , Axones , Cognición
12.
J Neuroinflammation ; 17(1): 323, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33115477

RESUMEN

BACKGROUND: The neuronal ceroid lipofuscinoses (CLN diseases) are fatal lysosomal storage diseases causing neurodegeneration in the CNS. We have previously shown that neuroinflammation comprising innate and adaptive immune reactions drives axonal damage and neuron loss in the CNS of palmitoyl protein thioesterase 1-deficient (Ppt1-/-) mice, a model of the infantile form of the diseases (CLN1). Therefore, we here explore whether pharmacological targeting of innate immune cells modifies disease outcome in CLN1 mice. METHODS: We applied treatment with PLX3397 (150 ppm in the chow), a potent inhibitor of the colony stimulating factor-1 receptor (CSF-1R) to target innate immune cells in CLN1 mice. Experimental long-term treatment was non-invasively monitored by longitudinal optical coherence tomography and rotarod analysis, as well as analysis of visual acuity, myoclonic jerks, and survival. Treatment effects regarding neuroinflammation, neural damage, and neurodegeneration were subsequently analyzed by histology and immunohistochemistry. RESULTS: We show that PLX3397 treatment attenuates neuroinflammation in CLN1 mice by depleting pro-inflammatory microglia/macrophages. This leads to a reduction of T lymphocyte recruitment, an amelioration of axon damage and neuron loss in the retinotectal system, as well as reduced thinning of the inner retina and total brain atrophy. Accordingly, long-term treatment with the inhibitor also ameliorates clinical outcomes in CLN1 mice, such as impaired motor coordination, visual acuity, and myoclonic jerks. However, we detected a sex- and region-biased efficacy of CSF-1R inhibition, with male microglia/macrophages showing higher responsiveness toward depletion, especially in the gray matter of the CNS. This results in a better treatment outcome in male Ppt1-/- mice regarding some histopathological and clinical readouts and reflects heterogeneity of innate immune reactions in the diseased CNS. CONCLUSIONS: Our results demonstrate a detrimental impact of innate immune reactions in the CNS of CLN1 mice. These findings provide insights into CLN pathogenesis and may guide in the design of immunomodulatory treatment strategies.


Asunto(s)
Aminopiridinas/uso terapéutico , Encéfalo/efectos de los fármacos , Macrófagos/efectos de los fármacos , Microglía/efectos de los fármacos , Lipofuscinosis Ceroideas Neuronales/tratamiento farmacológico , Pirroles/uso terapéutico , Aminopiridinas/farmacología , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Macrófagos/patología , Masculino , Ratones , Microglía/patología , Degeneración Nerviosa/tratamiento farmacológico , Degeneración Nerviosa/inmunología , Degeneración Nerviosa/patología , Lipofuscinosis Ceroideas Neuronales/inmunología , Lipofuscinosis Ceroideas Neuronales/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Pirroles/farmacología , Retina/efectos de los fármacos , Retina/patología , Factores Sexuales , Linfocitos T/efectos de los fármacos , Linfocitos T/patología , Tomografía de Coherencia Óptica
13.
Int J Mol Sci ; 21(12)2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32570968

RESUMEN

Mesenchymal stem cell (MSC)-secreted factors have been shown to significantly promote oligodendrogenesis from cultured primary adult neural stem cells (aNSCs) and oligodendroglial precursor cells (OPCs). Revealing underlying mechanisms of how aNSCs can be fostered to differentiate into a specific cell lineage could provide important insights for the establishment of novel neuroregenerative treatment approaches aiming at myelin repair. However, the nature of MSC-derived differentiation and maturation factors acting on the oligodendroglial lineage has not been identified thus far. In addition to missing information on active ingredients, the degree to which MSC-dependent lineage instruction is functional in vivo also remains to be established. We here demonstrate that MSC-derived factors can indeed stimulate oligodendrogenesis and myelin sheath generation of aNSCs transplanted into different rodent central nervous system (CNS) regions, and furthermore, we provide insights into the underlying mechanism on the basis of a comparative mass spectrometry secretome analysis. We identified a number of secreted proteins known to act on oligodendroglia lineage differentiation. Among them, the tissue inhibitor of metalloproteinase type 1 (TIMP-1) was revealed to be an active component of the MSC-conditioned medium, thus validating our chosen secretome approach.


Asunto(s)
Células Madre Mesenquimatosas/citología , Células-Madre Neurales/citología , Oligodendroglía/citología , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Células Madre Adultas/citología , Animales , Diferenciación Celular , Células Cultivadas , Medios de Cultivo Condicionados/química , Femenino , Células Madre Mesenquimatosas/metabolismo , Cultivo Primario de Células , Proteómica , Ratas , Trasplante de Células Madre
14.
Glia ; 68(2): 393-406, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31633850

RESUMEN

Apart from dedicated oligodendroglial progenitor cells, adult neural stem cells (aNSCs) can also give rise to new oligodendrocytes in the adult central nervous system (CNS). This process mainly confers myelinating glial cell replacement in pathological situations and can hence contribute to glial heterogeneity. Our previous studies demonstrated that the p57kip2 gene encodes an intrinsic regulator of glial fate acquisition and we here investigated to what degree its modulation can affect stem cell-dependent oligodendrogenesis in different CNS environments. We therefore transplanted p57kip2 knockdown aNSCs into white and gray matter (WM and GM) regions of the mouse brain, into uninjured spinal cords as well as in the vicinity of spinal cord injuries and evaluated integration and differentiation in vivo. Our experiments revealed that under healthy conditions intrinsic suppression of p57kip2 as well as WM localization promote differentiation toward myelinating oligodendrocytes at the expense of astrocyte generation. Moreover, p57kip2 knockdown conferred a strong benefit on cell survival augmenting net oligodendrocyte generation. In the vicinity of hemisectioned spinal cords, the gene knockdown led to a similar induction of oligodendroglial features; however, newly generated oligodendrocytes appeared to suffer more from the hostile environment. This study contributes to our understanding of mechanisms of adult oligodendrogenesis and glial heterogeneity and further reveals critical factors when considering aNSC mediated cell replacement in injury and disease.


Asunto(s)
Sustancia Gris/metabolismo , Células-Madre Neurales/citología , Oligodendroglía/metabolismo , Sustancia Blanca/metabolismo , Células Madre Adultas/metabolismo , Animales , Astrocitos/metabolismo , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Ratones Endogámicos C57BL , Neuroglía/metabolismo , Ratas
15.
Mol Genet Genomic Med ; 7(12): e859, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31568712

RESUMEN

BACKGROUND: One of the most important steps taken by Beyond Batten Disease Foundation in our quest to cure juvenile Batten (CLN3) disease is to understand the State of the Science. We believe that a strong understanding of where we are in our experimental understanding of the CLN3 gene, its regulation, gene product, protein structure, tissue distribution, biomarker use, and pathological responses to its deficiency, lays the groundwork for determining therapeutic action plans. OBJECTIVES: To present an unbiased comprehensive reference tool of the experimental understanding of the CLN3 gene and gene product of the same name. METHODS: BBDF compiled all of the available CLN3 gene and protein data from biological databases, repositories of federally and privately funded projects, patent and trademark offices, science and technology journals, industrial drug and pipeline reports as well as clinical trial reports and with painstaking precision, validated the information together with experts in Batten disease, lysosomal storage disease, lysosome/endosome biology. RESULTS: The finished product is an indexed review of the CLN3 gene and protein which is not limited in page size or number of references, references all available primary experiments, and does not draw conclusions for the reader. CONCLUSIONS: Revisiting the experimental history of a target gene and its product ensures that inaccuracies and contradictions come to light, long-held beliefs and assumptions continue to be challenged, and information that was previously deemed inconsequential gets a second look. Compiling the information into one manuscript with all appropriate primary references provides quick clues to which studies have been completed under which conditions and what information has been reported. This compendium does not seek to replace original articles or subtopic reviews but provides an historical roadmap to completed works.


Asunto(s)
Enfermedades por Almacenamiento Lisosomal/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Lipofuscinosis Ceroideas Neuronales/metabolismo , Biomarcadores/metabolismo , Regulación de la Expresión Génica , Humanos , Enfermedades por Almacenamiento Lisosomal/genética , Lisosomas/metabolismo , Mutación , Lipofuscinosis Ceroideas Neuronales/genética , Distribución Tisular
16.
Glia ; 67(2): 277-290, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30565754

RESUMEN

Genetically caused neurological disorders of the central nervous system (CNS) usually result in poor or even fatal clinical outcome and few or no causative treatments are available. Often, these disorders are associated with disease-amplifying neuroinflammation, a feature shared by progressive forms of multiple sclerosis (PMS), another poorly treatable disorder of the CNS. We have previously generated two mouse lines carrying distinct mutations in the oligodendrocytic PLP1 gene that have initially been identified in patients fulfilling clinical criteria for multiple sclerosis (MS). These mutations cause a loss of function of the gene product resulting in a histopathological and clinical phenotype common to both PMS and genetic CNS disorders, like hereditary spastic paraplegias. Importantly, neuroinflammation comprising adaptive immune reactions promotes disease progression in these PLP1 mutant models, opening the possibility to improve disease outcome of the respective disorders by targeting/modulating inflammation. We here show that PLX3397, a potent inhibitor of the CSF-1R and targeting innate immune cells, attenuates neuroinflammation in our models by reducing numbers of resident microglia and attenuating T-lymphocyte recruitment in the CNS. This leads to an amelioration of demyelination, axonopathic features and neuron loss in the retinotectal system, also reflected by reduced thinning of the inner retinal composite layer in longitudinal studies using noninvasive optical coherence tomography. Our findings identify microglia as important promoters of neuroinflammation-related neural damage and CSF-1R inhibition as a possible therapeutic strategy not only for PMS but also for inflammation-related genetic diseases of the nervous system for which causal treatment options are presently lacking.


Asunto(s)
Enfermedades del Sistema Nervioso Central/complicaciones , Enfermedades del Sistema Nervioso Central/genética , Inflamación , Microglía/metabolismo , Mutación/genética , Proteína Proteolipídica de la Mielina/genética , Aminopiridinas/uso terapéutico , Animales , Antiinflamatorios/uso terapéutico , Citocinas/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Citometría de Flujo , Humanos , Inflamación/tratamiento farmacológico , Inflamación/etiología , Inflamación/genética , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/patología , Microglía/ultraestructura , Microscopía Electrónica de Transmisión , Proteína Proteolipídica de la Mielina/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Neuronas/ultraestructura , Pirroles/uso terapéutico , Linfocitos T/efectos de los fármacos , Linfocitos T/patología , Tomografía de Coherencia Óptica
17.
J Neuroinflammation ; 15(1): 194, 2018 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-29970109

RESUMEN

BACKGROUND: Genetically caused neurological disorders of the central nervous system (CNS) are mostly characterized by poor or even fatal clinical outcome and few or no causative treatments are available. Often, these disorders are associated with low-grade, disease-promoting inflammation, another feature shared by progressive forms of multiple sclerosis (PMS). We previously generated two mouse lines carrying distinct mutations in the oligodendrocytic PLP1 gene that have initially been identified in patients diagnosed with MS. These mutations cause a loss of PLP function leading to a histopathological and clinical phenotype common to both PMS and genetic CNS disorders, like hereditary spastic paraplegias. Importantly, neuroinflammation promotes disease progression in these models, suggesting that pharmacological modulation of inflammation might ameliorate disease outcome. METHODS: We applied teriflunomide, an approved medication for relapsing-remitting MS targeting activated T-lymphocytes, in the drinking water (10 mg/kg body weight/day). Experimental long-term treatment of PLP mutant mice was non-invasively monitored by longitudinal optical coherence tomography and by rotarod analysis. Immunomodulatory effects were subsequently analyzed by flow cytometry and immunohistochemistry and treatment effects regarding neural damage, and neurodegeneration were assessed by histology and immunohistochemistry. RESULTS: Preventive treatment with teriflunomide attenuated the increase in number of CD8+ cytotoxic effector T cells and fostered the proliferation of CD8+ CD122+ PD-1+ regulatory T cells in the CNS. This led to an amelioration of axonopathic features and neuron loss in the retinotectal system, also reflected by reduced thinning of the innermost retinal composite layer in longitudinal studies and ameliorated clinical outcome upon preventive long-term treatment. Treatment of immune-incompetent PLP mutants did not provide evidence for a direct, neuroprotective effect of the medication. When treatment was terminated, no rebound of neuroinflammation occurred and histopathological improvement was preserved for at least 75 days without treatment. After disease onset, teriflunomide halted ongoing axonal perturbation and enabled a recovery of dendritic arborization by surviving ganglion cells. However, neither neuron loss nor clinical features were ameliorated, likely due to already advanced neurodegeneration before treatment onset. CONCLUSIONS: We identify teriflunomide as a possible medication not only for PMS but also for inflammation-related genetic diseases of the nervous system for which causal treatment options are presently lacking.


Asunto(s)
Antiinflamatorios/uso terapéutico , Crotonatos/uso terapéutico , Inflamación , Leucocitos/patología , Esclerosis Múltiple , Toluidinas/uso terapéutico , Animales , Antígenos CD/metabolismo , Axones/efectos de los fármacos , Axones/patología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hidroxibutiratos , Inflamación/tratamiento farmacológico , Inflamación/etiología , Inflamación/patología , Antígeno Ki-67/metabolismo , Leucocitos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/patología , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/genética , Esclerosis Múltiple/patología , Mutación/genética , Proteína Proteolipídica de la Mielina/genética , Proteína Proteolipídica de la Mielina/metabolismo , Nitrilos , Receptor de Muerte Celular Programada 1/metabolismo , Retina/patología
18.
Glia ; 65(9): 1407-1422, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28568966

RESUMEN

Genetically caused neurological disorders of the central nervous system (CNS) are usually orphan diseases with poor or even fatal clinical outcome and few or no treatments that will improve longevity or at least quality of life. Neuroinflammation is common to many of these disorders, despite the fact that a plethora of distinct mutations and molecular changes underlie the disorders. In this article, data from corresponding animal models are analyzed to define the roles of innate and adaptive inflammation as modifiers and amplifiers of disease. We describe both common and distinct patterns of neuroinflammation in genetically mediated CNS disorders and discuss the contrasting mechanisms that lead to adverse versus neuroprotective effects. Moreover, we identify the juxtaparanode as a neuroanatomical compartment commonly associated with inflammatory cells and ongoing axonopathic changes, in models of diverse diseases. The identification of key immunological effector pathways that amplify neuropathic features should lead to realistic possibilities for translatable therapeutic interventions using existing immunomodulators. Moreover, evidence emerges that neuroinflammation is not only able to modify primary neural damage-related symptoms but also may lead to unexpected clinical outcomes such as neuropsychiatric syndromes.


Asunto(s)
Enfermedades del Sistema Nervioso Central/inmunología , Enfermedades del Sistema Nervioso Central/terapia , Inflamación/fisiopatología , Inflamación/terapia , Animales , Enfermedades del Sistema Nervioso Central/genética , Humanos , Inflamación/genética , Neuroinmunomodulación/fisiología
19.
Mol Ther ; 25(8): 1889-1899, 2017 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-28506594

RESUMEN

CLN diseases are rare lysosomal storage diseases characterized by progressive axonal degeneration and neuron loss in the CNS, manifesting in disability, blindness, and premature death. We have previously demonstrated that, in animal models of infantile and juvenile forms of CLN disease (CLN1 and CLN3, respectively), secondary neuroinflammation in the CNS substantially amplifies neural damage, opening the possibility that immunomodulatory treatment might improve disease outcome. First, we recapitulated the inflammatory phenotype, originally seen in mice in autopsies of CLN patients. We then treated mouse models of CLN1 and CLN3 disease with the clinically approved immunomodulatory compounds fingolimod (0.5 mg/kg/day) and teriflunomide (10 mg/kg/day) by consistent supply in the drinking water for 5 months. The treatment was well tolerated and reduced T cell numbers and microgliosis in the CNS of both models. Moreover, axonal damage, neuron loss, retinal thinning, and brain atrophy were substantially attenuated in both models, along with reduced frequency of myoclonic jerks in Ppt1-/- mice. Based on these findings, and because side effects were not detected, we suggest that clinically approved immune modulators such as fingolimod and teriflunomide may be suitable to attenuate progression of CLN1 and CLN3 disease and, possibly, other orphan diseases with pathogenically relevant neuroinflammation.


Asunto(s)
Crotonatos/farmacología , Clorhidrato de Fingolimod/farmacología , Lipofuscinosis Ceroideas Neuronales/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Toluidinas/farmacología , Adolescente , Adulto , Aminopeptidasas/genética , Aminopeptidasas/metabolismo , Animales , Axones/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Niño , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Hidroxibutiratos , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Lipofuscinosis Ceroideas Neuronales/tratamiento farmacológico , Lipofuscinosis Ceroideas Neuronales/patología , Neuronas/patología , Nitrilos , Serina Proteasas/genética , Serina Proteasas/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/patología , Tioléster Hidrolasas/deficiencia , Tripeptidil Peptidasa 1 , Adulto Joven
20.
Acta Neuropathol Commun ; 4(1): 108, 2016 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-27716431

RESUMEN

Isolated generalized dystonia is a central motor network disorder characterized by twisted movements or postures. The most frequent genetic cause is a GAG deletion in the Tor1a (DYT1) gene encoding torsinA with a reduced penetrance of 30-40 % suggesting additional genetic or environmental modifiers. Development of dystonia-like movements after a standardized peripheral nerve crush lesion in wild type (wt) and Tor1a+/- mice, that express 50 % torsinA only, was assessed by scoring of hindlimb movements during tail suspension, by rotarod testing and by computer-assisted gait analysis. Western blot analysis was performed for dopamine transporter (DAT), D1 and D2 receptors from striatal and quantitative RT-PCR analysis for DAT from midbrain dissections. Autoradiography was used to assess the functional DAT binding in striatum. Striatal dopamine and its metabolites were analyzed by high performance liquid chromatography. After nerve crush injury, we found abnormal posturing in the lesioned hindlimb of both mutant and wt mice indicating the profound influence of the nerve lesion (15x vs. 12x relative to control) resembling human peripheral pseudodystonia. In mutant mice the phenotypic abnormalities were increased by about 40 % (p < 0.05). This was accompanied by complex alterations of striatal dopamine homeostasis. Pharmacological blockade of dopamine synthesis reduced severity of dystonia-like movements, whereas treatment with L-Dopa aggravated these but only in mutant mice suggesting a DYT1 related central component relevant to the development of abnormal involuntary movements. Our findings suggest that upon peripheral nerve injury reduced torsinA concentration and environmental stressors may act in concert in causing the central motor network dysfunction of DYT1 dystonia.


Asunto(s)
Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Distonía/metabolismo , Chaperonas Moleculares/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Nervio Ciático/lesiones , Animales , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/patología , Dopaminérgicos/farmacología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Distonía/tratamiento farmacológico , Distonía/etiología , Distonía/patología , Marcha/efectos de los fármacos , Marcha/fisiología , Miembro Posterior/fisiopatología , Homeostasis/efectos de los fármacos , Homeostasis/fisiología , Levodopa/farmacología , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Chaperonas Moleculares/genética , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Traumatismos de los Nervios Periféricos/complicaciones , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Traumatismos de los Nervios Periféricos/patología , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Nervio Ciático/patología , Nervio Ciático/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA