Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Diabetes ; 72(8): 1112-1126, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37216637

RESUMEN

The loss of pancreatic ß-cell identity has emerged as an important feature of type 2 diabetes development, but the molecular mechanisms are still elusive. Here, we explore the cell-autonomous role of the cell-cycle regulator and transcription factor E2F1 in the maintenance of ß-cell identity, insulin secretion, and glucose homeostasis. We show that the ß-cell-specific loss of E2f1 function in mice triggers glucose intolerance associated with defective insulin secretion, altered endocrine cell mass, downregulation of many ß-cell genes, and concomitant increase of non-ß-cell markers. Mechanistically, epigenomic profiling of the promoters of these non-ß-cell upregulated genes identified an enrichment of bivalent H3K4me3/H3K27me3 or H3K27me3 marks. Conversely, promoters of downregulated genes were enriched in active chromatin H3K4me3 and H3K27ac histone marks. We find that specific E2f1 transcriptional, cistromic, and epigenomic signatures are associated with these ß-cell dysfunctions, with E2F1 directly regulating several ß-cell genes at the chromatin level. Finally, the pharmacological inhibition of E2F transcriptional activity in human islets also impairs insulin secretion and the expression of ß-cell identity genes. Our data suggest that E2F1 is critical for maintaining ß-cell identity and function through sustained control of ß-cell and non-ß-cell transcriptional programs. ARTICLE HIGHLIGHTS: ß-Cell-specific E2f1 deficiency in mice impairs glucose tolerance. Loss of E2f1 function alters the ratio of α- to ß-cells but does not trigger ß-cell conversion into α-cells. Pharmacological inhibition of E2F activity inhibits glucose-stimulated insulin secretion and alters ß- and α-cell gene expression in human islets. E2F1 maintains ß-cell function and identity through control of transcriptomic and epigenetic programs.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Animales , Humanos , Ratones , Cromatina/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Histonas/metabolismo , Homeostasis/genética , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Ratones Noqueados
2.
Cells ; 12(6)2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36980190

RESUMEN

Type 2 diabetes (T2D) is a metabolic disorder characterized by loss of pancreatic ß-cell function, decreased insulin secretion and increased insulin resistance, that affects more than 537 million people worldwide. Although several treatments are proposed to patients suffering from T2D, long-term control of glycemia remains a challenge. Therefore, identifying new potential drugs and targets that positively affect ß-cell function and insulin secretion remains crucial. Here, we developed an automated approach to allow the identification of new compounds or genes potentially involved in ß-cell function in a 384-well plate format, using the murine ß-cell model Min6. By using MALDI-TOF mass spectrometry, we implemented a high-throughput screening (HTS) strategy based on the automation of a cellular assay allowing the detection of insulin secretion in response to glucose, i.e., the quantitative detection of insulin, in a miniaturized system. As a proof of concept, we screened siRNA targeting well-know ß-cell genes and 1600 chemical compounds and identified several molecules as potential regulators of insulin secretion and/or synthesis, demonstrating that our approach allows HTS of insulin secretion in vitro.


Asunto(s)
Diabetes Mellitus Tipo 2 , Insulina , Humanos , Animales , Ratones , Insulina/metabolismo , Secreción de Insulina , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/farmacología , Glucosa/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Ensayos Analíticos de Alto Rendimiento , Insulina Regular Humana/metabolismo
3.
Cell Rep ; 40(6): 111170, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35947949

RESUMEN

The glucagon-like peptide 1 (Glp-1) has emerged as a hormone with broad pharmacological potential in type 2 diabetes (T2D) treatment, notably by improving ß cell functions. The cell-cycle regulator and transcription factor E2f1 is involved in glucose homeostasis by modulating ß cell mass and function. Here, we report that ß cell-specific genetic ablation of E2f1 (E2f1ß-/-) impairs glucose homeostasis associated with decreased expression of the Glp-1 receptor (Glp1r) in E2f1ß-/- pancreatic islets. Pharmacological inhibition of E2F1 transcriptional activity in nondiabetic human islets decreases GLP1R levels and blunts the incretin effect of GLP1R agonist exendin-4 (ex-4) on insulin secretion. Overexpressing E2f1 in pancreatic ß cells increases Glp1r expression associated with enhanced insulin secretion mediated by ex-4. Interestingly, ex-4 induces retinoblastoma protein (pRb) phosphorylation and E2f1 transcriptional activity. Our findings reveal critical roles for E2f1 in ß cell function and suggest molecular crosstalk between the E2F1/pRb and GLP1R signaling pathways.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Diabetes Mellitus Tipo 2/metabolismo , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Exenatida/farmacología , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo
4.
Cells ; 11(2)2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-35053407

RESUMEN

Type 2 diabetes is characterized by chronic hyperglycemia associated with impaired insulin action and secretion. Although the heritability of type 2 diabetes is high, the environment, including blood components, could play a major role in the development of the disease. Amongst environmental effects, epitranscriptomic modifications have been recently shown to affect gene expression and glucose homeostasis. The epitranscriptome is characterized by reversible chemical changes in RNA, with one of the most prevalent being the m6A methylation of RNA. Since pancreatic ß cells fine tune glucose levels and play a major role in type 2 diabetes physiopathology, we hypothesized that the environment, through variations in blood glucose or blood free fatty acid concentrations, could induce changes in m6A methylation of RNAs in pancreatic ß cells. Here we observe a significant decrease in m6A methylation upon high glucose concentration, both in mice and human islets, associated with altered expression levels of m6A demethylases. In addition, the use of siRNA and/or specific inhibitors against selected m6A enzymes demonstrate that these enzymes modulate the expression of genes involved in pancreatic ß-cell identity and glucose-stimulated insulin secretion. Our data suggest that environmental variations, such as glucose, control m6A methylation in pancreatic ß cells, playing a key role in the control of gene expression and pancreatic ß-cell functions. Our results highlight novel causes and new mechanisms potentially involved in type 2 diabetes physiopathology and may contribute to a better understanding of the etiology of this disease.


Asunto(s)
Adenosina/análogos & derivados , Glucosa/metabolismo , Islotes Pancreáticos/metabolismo , ARN/metabolismo , Adenosina/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Animales , Línea Celular , Regulación hacia Abajo/efectos de los fármacos , Glucosa/farmacología , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Metilación/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Palmitatos/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo
5.
Diabetes ; 69(4): 647-660, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32005707

RESUMEN

Aging-dependent changes in tissue function are associated with the development of metabolic diseases. However, the molecular connections linking aging, obesity, and diabetes remain unclear. Lamin A, lamin C, and progerin, products of the Lmna gene, have antagonistic functions on energy metabolism and life span. Lamin C, albeit promoting obesity, increases life span, suggesting that this isoform is crucial for maintaining healthy conditions under metabolic stresses. Because ß-cell loss during obesity or aging leads to diabetes, we investigated the contribution of lamin C to ß-cell function in physiopathological conditions. We demonstrate that aged lamin C only-expressing mice (Lmna LCS/LCS ) become obese but remain glucose tolerant due to adaptive mechanisms including increased ß-cell mass and insulin secretion. Triggering diabetes in young mice revealed that Lmna LCS/LCS animals normalize their fasting glycemia by both increasing insulin secretion and regenerating ß-cells. Genome-wide analyses combined to functional analyses revealed an increase of mitochondrial biogenesis and global translational rate in Lmna LCS/LCS islets, two major processes involved in insulin secretion. Altogether, our results demonstrate for the first time that the sole expression of lamin C protects from glucose intolerance through a ß-cell-adaptive transcriptional program during metabolic stresses, highlighting Lmna gene processing as a new therapeutic target for diabetes treatment.


Asunto(s)
Envejecimiento/metabolismo , Diabetes Mellitus/metabolismo , Intolerancia a la Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Lamina Tipo A/metabolismo , Obesidad/metabolismo , Envejecimiento/genética , Animales , Glucemia/metabolismo , Diabetes Mellitus/genética , Metabolismo Energético/fisiología , Glucagón/metabolismo , Intolerancia a la Glucosa/genética , Insulina/metabolismo , Lamina Tipo A/genética , Ratones , Ratones Transgénicos , Obesidad/genética , Páncreas/metabolismo
6.
Front Microbiol ; 11: 561060, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33505362

RESUMEN

Lipopeptide biosurfactants produced by Bacillus sp. were assessed regarding their antimicrobial activity against foodborne pathogenic and food spoilage microorganisms. Both Gram-positive and Gram-negative bacteria were found not to be susceptible to these lipopeptides. However, mycosubtilin and mycosubtilin/surfactin mixtures were very active against the filamentous fungi Paecilomyces variotti and Byssochlamys fulva, with minimum inhibitory concentrations (MICs) of 1-16 mg/L. They were also active against Candida krusei, MIC = 16-64 mg/L. Moreover it was found that the antifungal activity of these lipopeptides was not affected by differences in isoform composition and/or purity. Furthermore their cytotoxicity tested on two different cell lines mimicking ingestion and detoxification was comparable to those of approved food preservatives such as nisin. Overall, for the first time here mycosubtilin and mycosubtilin/surfactin mixtures were found to have high antifungal activity against food relevant fungi at concentrations lower than their toxicity level hence, suggesting their application for extending the shelf-life of products susceptible to these moulds. In addition combining nisin with mycosubtilin or mycosubtiliin/surfactin mixtures proved to be an effective approach to produce antimicrobials with broader spectrum of action.

7.
Mol Metab ; 8: 65-76, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29237539

RESUMEN

OBJECTIVES: Genome-wide association studies have reported that DNA polymorphisms at the CDKN2A locus modulate fasting glucose in human and contribute to type 2 diabetes (T2D) risk. Yet the causal relationship between this gene and defective energy homeostasis remains elusive. Here we sought to understand the contribution of Cdkn2a to metabolic homeostasis. METHODS: We first analyzed glucose and energy homeostasis from Cdkn2a-deficient mice subjected to normal or high fat diets. Subsequently Cdkn2a-deficient primary adipose cells and human-induced pluripotent stem differentiated into adipocytes were further characterized for their capacity to promote browning of adipose tissue. Finally CDKN2A levels were studied in adipocytes from lean and obese patients. RESULTS: We report that Cdkn2a deficiency protects mice against high fat diet-induced obesity, increases energy expenditure and modulates adaptive thermogenesis, in addition to improving insulin sensitivity. Disruption of Cdkn2a associates with increased expression of brown-like/beige fat markers in inguinal adipose tissue and enhances respiration in primary adipose cells. Kinase activity profiling and RNA-sequencing analysis of primary adipose cells further demonstrate that Cdkn2a modulates gene networks involved in energy production and lipid metabolism, through the activation of the Protein Kinase A (PKA), PKG, PPARGC1A and PRDM16 signaling pathways, key regulators of adipocyte beiging. Importantly, CDKN2A expression is increased in adipocytes from obese compared to lean subjects. Moreover silencing CDKN2A expression during human-induced pluripotent stem cells adipogenic differentiation promoted UCP1 expression. CONCLUSION: Our results offer novel insight into brown/beige adipocyte functions, which has recently emerged as an attractive therapeutic strategy for obesity and T2D. Modulating Cdkn2a-regulated signaling cascades may be of interest for the treatment of metabolic disorders.


Asunto(s)
Adipocitos Marrones/metabolismo , Adipogénesis , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Obesidad/metabolismo , Adipocitos Marrones/citología , Animales , Células Cultivadas , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Redes Reguladoras de Genes , Glucosa/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Termogénesis
8.
Cell Rep ; 15(5): 1051-1061, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27117420

RESUMEN

The endoplasmic reticulum (ER) unfolded protein response (UPR(er)) pathway plays an important role in helping pancreatic ß cells to adapt their cellular responses to environmental cues and metabolic stress. Although altered UPR(er) gene expression appears in rodent and human type 2 diabetic (T2D) islets, the underlying molecular mechanisms remain unknown. We show here that germline and ß cell-specific disruption of the lysine acetyltransferase 2B (Kat2b) gene in mice leads to impaired insulin secretion and glucose intolerance. Genome-wide analysis of Kat2b-regulated genes and functional assays reveal a critical role for Kat2b in maintaining UPR(er) gene expression and subsequent ß cell function. Importantly, Kat2b expression is decreased in mouse and human diabetic ß cells and correlates with UPR(er) gene expression in normal human islets. In conclusion, Kat2b is a crucial transcriptional regulator for adaptive ß cell function during metabolic stress by controlling UPR(er) and represents a promising target for T2D prevention and treatment.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Intolerancia a la Glucosa/genética , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Respuesta de Proteína Desplegada/fisiología , Factores de Transcripción p300-CBP/genética , Adaptación Fisiológica , Animales , Línea Celular , Retículo Endoplásmico/metabolismo , Humanos , Secreción de Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Interferencia de ARN , ARN Interferente Pequeño , Transducción de Señal , Estrés Fisiológico , Factores de Transcripción/metabolismo , Respuesta de Proteína Desplegada/genética , Factores de Transcripción p300-CBP/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...