Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38853940

RESUMEN

In gene therapy, delivery vectors are a key component for successful gene delivery and safety, based on which adeno-associated viruses (AAVs) gained popularity in particular for the liver, but also for other organs. Traditionally, rodents have been used as animal models to develop and optimize treatments, but species and organ specific tropism of AAV desire large animal models more closely related to humans for preclinical in-depth studies. Relevant AAV variants with the potential for clinical translation in liver gene therapy were previously evolved in vivo in a xenogeneic mouse model transplanted with human hepatocytes. Here, we selected and evaluated efficient AAV capsids using chimeric mice with a >90% xenografted pig hepatocytes. The pig is a valuable preclinical model for therapy studies due to its anatomic and immunological similarities to humans. Using a DNA-barcoded recombinant AAV library containing 47 different capsids and subsequent Illumina sequencing of barcodes in the AAV vector genome DNA and transcripts in the porcine hepatocytes, we found the AAVLK03 and AAVrh20 capsid to be the most efficient delivery vectors regarding transgene expression in porcine hepatocytes. In attempting to validate these findings with primary porcine hepatocytes, we observed capsid-specific differences in cell entry and transgene expression efficiency where the AAV2, AAVAnc80, and AAVDJ capsids showed superior efficiency to AAVLK03 and AAVrh20. This work highlights intricacies of in vitro testing with primary hepatocytes and the requirements for suitable pre-clinical animal models but suggests the chimeric mouse to be a valuable model to predict AAV capsids to transduce porcine hepatocytes efficiently.

2.
Pediatr Blood Cancer ; 71(8): e31030, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38733122

RESUMEN

Fanconi anemia (FA) is a disease caused by defective deoxyribonucleic acid (DNA) repair that manifests as bone marrow failure, cancer predisposition, and developmental defects. We previously reported that monotherapy with either metformin (MET) or oxymetholone (OXM) improved peripheral blood (PB) counts and the number and functionality of bone marrow hematopoietic stem progenitor cells (HSPCs) number in Fancd2-/- mice. To evaluate whether the combination treatment of these drugs has a synergistic effect to prevent bone marrow failure in FA, we treated cohorts of Fancd2-/- mice and wildtype controls with either MET alone, OXM alone, MET+OXM, or placebo diet from age 3 weeks to 18 months. The OXM treated animals showed modest improvements in blood parameters including platelet count (p = .01) and hemoglobin levels (p < .05). In addition, the percentage of quiescent hematopoietic stem cell (HSC) (LSK [Lin-Sca+c-Kit+]) was significantly increased (p = .001) by long-term treatment with MET alone. The combination of metformin and oxymetholone did not result in a significant synergistic effect in any hematopoietic parameter. Gene expression analysis of liver tissue from these animals showed that some of the expression changes caused by Fancd2 deletion were partially normalized by metformin treatment. Importantly, no adverse effects of the individual or combination therapies were observed, despite the long-term administration. We conclude that androgen therapy is not a contraindication to concurrent metformin administration in clinical trials. HIGHLIGHTS: Long-term coadministration of metformin in combination with oxymetholone is well tolerated by Fancd2-/- mice. Hematopoietic stem cell quiescence in mutant mice was enhanced by treatment with metformin alone. Metformin treatment caused a partial normalization of gene expression in the livers of mutant mice.


Asunto(s)
Modelos Animales de Enfermedad , Quimioterapia Combinada , Anemia de Fanconi , Metformina , Oximetolona , Animales , Metformina/farmacología , Metformina/administración & dosificación , Ratones , Anemia de Fanconi/tratamiento farmacológico , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Ratones Noqueados , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA