Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Physiol ; 587(Pt 14): 3561-72, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19491245

RESUMEN

Several studies using transgenic mouse models of familial amyotrophic lateral sclerosis (ALS) have reported a life span increase in exercised animals, as long as animals are submitted to a moderate-intensity training protocol. However, the neuroprotective potential of exercise is still questionable. To gain further insight into the cellular basis of the exercise-induced effects in neuroprotection, we compared the efficiency of a swimming-based training, a high-frequency and -amplitude exercise that preferentially recruits the fast motor units, and of a moderate running-based training, that preferentially triggers the slow motor units, in an ALS mouse model. Surprisingly, we found that the swimming-induced benefits sustained the motor function and increased the ALS mouse life span by about 25 days. The magnitude of this beneficial effect is one of the highest among those induced by any therapeutic strategy in this disease. We have shown that, unlike running, swimming significantly delays spinal motoneuron death and, more specifically, the motoneurons of large soma area. Analysis of the muscular phenotype revealed a swimming-induced relative maintenance of the fast phenotype in fast-twitch muscles. Furthermore, the swimming programme preserved astrocyte and oligodendrocyte populations in ALS spinal cord. As a whole, these data are highly suggestive of a causal relationship not only linking motoneuron activation and protection, but also motoneuron protection and the maintenance of the motoneuron surrounding environment. Basically, exercise-induced neuroprotective mechanisms provide an example of the molecular adaptation of activated motoneurons.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Modelos Animales de Enfermedad , Terapia por Ejercicio , Neuronas Motoras/patología , Condicionamiento Físico Animal/métodos , Esfuerzo Físico , Potenciales de Acción , Esclerosis Amiotrófica Lateral/prevención & control , Animales , Supervivencia Celular , Humanos , Masculino , Ratones , Ratones Transgénicos
2.
J Neurosci ; 28(4): 953-62, 2008 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-18216203

RESUMEN

Spinal muscular atrophy (SMA) is an inborn neuromuscular disorder caused by low levels of survival motor neuron protein, and for which no efficient therapy exists. Here, we show that the slower rate of postnatal motor-unit maturation observed in type 2 SMA-like mice is correlated with the motor neuron death. Physical exercise delays motor neuron death and leads to an increase in the postnatal maturation rate of the motor-units. Furthermore, exercise is capable of specifically enhancing the expression of the gene encoding the major activating subunit of the NMDA receptor in motor neurons, namely the NR2A subunit, which is dramatically downregulated in the spinal cord of type 2 SMA-like mice. Accordingly, inhibiting NMDA-receptor activity abolishes the exercise-induced effects on muscle development, motor neuron protection and life span gain. Thus, restoring NMDA-receptor function could be a promising therapeutic approach to SMA treatment.


Asunto(s)
Neuronas Motoras/metabolismo , Condicionamiento Físico Animal/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Atrofias Musculares Espinales de la Infancia/genética , Atrofias Musculares Espinales de la Infancia/metabolismo , Animales , Supervivencia Celular/genética , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Neuronas Motoras/patología , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Receptores de N-Metil-D-Aspartato/deficiencia , Receptores de N-Metil-D-Aspartato/genética , Atrofias Musculares Espinales de la Infancia/patología
3.
J Cell Physiol ; 214(1): 126-35, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17559060

RESUMEN

This study establishes a causal link between the limitation of myofibre transitions and modulation of calcineurin activity, during different exercise paradigms. We have designed a new swimming-based training protocol in order to draw a comparison between a high frequency and amplitude exercise (swimming) and low frequency and amplitude exercise (running). We initially analysed the time course of muscle adaptations to a 6- or 12-week swimming- or running-based training exercise program, on two muscles of the mouse calf, the slow-twitch soleus and the fast-twitch plantaris. The magnitude of exercise-induced muscle plasticity proved to be dependent on both the muscle type and the exercise paradigm. In contrast to the running-based training which generated a continuous increase of the slow phenotype throughout a 12-week training program, swimming induced transitions to a slower phenotype which ended after 6 weeks of training. We then compared the time course of the exercise-induced changes in calcineurin activity during muscle adaptation to training. Both exercises induced an initial activation followed by the inhibition of calcineurin. In the muscles of animals submitted to a 12-week swimming-based training, this inhibition was concomitant with the end of myofibre transition. Calcineurin inhibition was a consequence of the inhibition of its catalytic subunit gene expression on one hand, and of the expression increase of the modulatory calcineurin interacting proteins 1 gene (MCIP1), on the other. The present study provides the first experimental cues for an interpretation of muscle phenotypic variation control.


Asunto(s)
Calcineurina/fisiología , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Lenta/metabolismo , Condicionamiento Físico Animal/fisiología , Adaptación Fisiológica , Animales , Calcineurina/genética , Colina O-Acetiltransferasa/metabolismo , Prueba de Esfuerzo , Inmunohistoquímica , Ácido Láctico/sangre , Masculino , Ratones , Ratones Endogámicos CBA , Actividad Motora , Neuronas Motoras/metabolismo , Músculo Esquelético/enzimología , Músculo Esquelético/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Monoéster Fosfórico Hidrolasas/fisiología , Isoformas de Proteínas , Proteínas Proto-Oncogénicas c-fos/inmunología , ARN Mensajero/metabolismo , Carrera , Natación , Factores de Tiempo
4.
J Neurosci ; 25(33): 7615-22, 2005 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-16107648

RESUMEN

Several studies indicate that physical exercise is likely to be neuroprotective, even in the case of neuromuscular disease. In the present work, we evaluated the efficiency of running-based training on type 2 spinal muscular atrophy (SMA)-like mice. The model used in this study is an SMN (survival motor neuron)-null mouse carrying one copy of a transgene of human SMN2. The running-induced benefits sustained the motor function and the life span of the type 2 SMA-like mice by 57.3%. We showed that the extent of neuronal death is reduced in the lumbar anterior horn of the spinal cord of running-trained mice in comparison with untrained animals. Notably, exercise enhanced motoneuron survival. We showed that the running-mediated neuroprotection is related to a change of the alternative splicing pattern of exon 7 in the SMN2 gene, leading to increased amounts of exon 7-containing transcripts in the spinal cord of trained mice. In addition, analysis at the level of two muscles from the calf, the slow-twitch soleus and the fast-twitch plantaris, showed an overall conserved muscle phenotype in running-trained animals. These data provide the first evidence for the beneficial effect of exercise in SMA and might lead to important therapeutic developments for human SMA patients.


Asunto(s)
Modelos Animales de Enfermedad , Condicionamiento Físico Animal/métodos , Atrofias Musculares Espinales de la Infancia/genética , Atrofias Musculares Espinales de la Infancia/mortalidad , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/biosíntesis , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Femenino , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Neuronas Motoras/patología , Neuronas Motoras/fisiología , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Proteínas de Unión al ARN/biosíntesis , Proteínas de Unión al ARN/genética , Proteínas del Complejo SMN , Atrofias Musculares Espinales de la Infancia/patología , Tasa de Supervivencia , Proteína 2 para la Supervivencia de la Neurona Motora , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...