Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
2.
Am J Psychiatry ; 181(3): 223-233, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38321916

RESUMEN

OBJECTIVE: Response to antidepressant treatment in major depressive disorder varies substantially between individuals, which lengthens the process of finding effective treatment. The authors sought to determine whether a multimodal machine learning approach could predict early sertraline response in patients with major depressive disorder. They assessed the predictive contribution of MR neuroimaging and clinical assessments at baseline and after 1 week of treatment. METHODS: This was a preregistered secondary analysis of data from the Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care (EMBARC) study, a multisite double-blind, placebo-controlled randomized clinical trial that included 296 adult outpatients with unmedicated recurrent or chronic major depressive disorder. MR neuroimaging and clinical data were collected before and after 1 week of treatment. Performance in predicting response and remission, collected after 8 weeks, was quantified using balanced accuracy (bAcc) and area under the receiver operating characteristic curve (AUROC) scores. RESULTS: A total of 229 patients were included in the analyses (mean age, 38 years [SD=13]; 66% female). Internal cross-validation performance in predicting response to sertraline (bAcc=68% [SD=10], AUROC=0.73 [SD=0.03]) was significantly better than chance. External cross-validation on data from placebo nonresponders (bAcc=62%, AUROC=0.66) and placebo nonresponders who were switched to sertraline (bAcc=65%, AUROC=0.68) resulted in differences that suggest specificity for sertraline treatment compared with placebo treatment. Finally, multimodal models outperformed unimodal models. CONCLUSIONS: The study results confirm that early sertraline treatment response can be predicted; that the models are sertraline specific compared with placebo; that prediction benefits from integrating multimodal MRI data with clinical data; and that perfusion imaging contributes most to these predictions. Using this approach, a lean and effective protocol could individualize sertraline treatment planning to improve psychiatric care.


Asunto(s)
Trastorno Depresivo Mayor , Sertralina , Adulto , Humanos , Femenino , Masculino , Sertralina/uso terapéutico , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/psicología , Método Doble Ciego , Antidepresivos/uso terapéutico , Imagen por Resonancia Magnética
3.
Front Neurol ; 14: 1244672, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37840934

RESUMEN

Introduction: Radiological assessment is necessary to diagnose spontaneous intracerebral hemorrhage (ICH) and traumatic brain injury intracranial hemorrhage (TBI-bleed). Artificial intelligence (AI) deep learning tools provide a means for decision support. This study evaluates the hemorrhage segmentations produced from three-dimensional deep learning AI model that was developed using non-contrast computed tomography (CT) imaging data external to the current study. Methods: Non-contrast CT imaging data from 1263 patients were accessed across seven data sources (referred to as sites) in Norway and Sweden. Patients were included based on ICH, TBI-bleed, or mild TBI diagnosis. Initial non-contrast CT images were available for all participants. Hemorrhage location frequency maps were generated. The number of estimated haematoma clusters was correlated with the total haematoma volume. Ground truth expert annotations were available for one ICH site; hence, a comparison was made with the estimated haematoma volumes. Segmentation volume estimates were used in a receiver operator characteristics (ROC) analysis for all samples (i.e., bleed detected) and then specifically for one site with few TBI-bleed cases. Results: The hemorrhage frequency maps showed spatial patterns of estimated lesions consistent with ICH or TBI-bleed presentations. There was a positive correlation between the estimated number of clusters and total haematoma volume for each site (correlation range: 0.45-0.74; each p-value < 0.01) and evidence of ICH between-site differences. Relative to hand-drawn annotations for one ICH site, the VIOLA-AI segmentation mask achieved a median Dice Similarity Coefficient of 0.82 (interquartile range: 0.78 and 0.83), resulting in a small overestimate in the haematoma volume by a median of 0.47 mL (interquartile range: 0.04 and 1.75 mL). The bleed detection ROC analysis for the whole sample gave a high area-under-the-curve (AUC) of 0.92 (with sensitivity and specificity of 83.28% and 95.41%); however, when considering only the mild head injury site, the TBI-bleed detection gave an AUC of 0.70. Discussion: An open-source segmentation tool was used to visualize hemorrhage locations across multiple data sources and revealed quantitative hemorrhage site differences. The automated total hemorrhage volume estimate correlated with a per-participant hemorrhage cluster count. ROC results were moderate-to-high. The VIOLA-AI tool had promising results and might be useful for various types of intracranial hemorrhage.

4.
Brain Commun ; 5(4): fcad210, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37554956

RESUMEN

Insomnia poses a high risk for depression. Brain mechanisms of sleep and mood improvement following cognitive behavioural therapy for insomnia remain elusive. This longitudinal study evaluated whether (i) individual differences in baseline brain white matter microstructure predict improvements and (ii) intervention affects brain white matter microstructure. People meeting the Diagnostic and Statistical Manual of Mental Disorders-5 criteria for Insomnia Disorder (n = 117) participated in a randomized controlled trial comparing 6 weeks of no treatment with therapist-guided digital cognitive behavioural therapy for insomnia, circadian rhythm support or their combination (cognitive behavioural therapy for insomnia + circadian rhythm support). Insomnia Severity Index and Inventory of Depressive Symptomatology-Self Report were assessed at baseline and followed up at Weeks 7, 26, 39 and 52. Diffusion-weighted magnetic resonance images were acquired at baseline and Week 7. Skeletonized white matter tracts, fractional anisotropy and mean diffusivity were quantified both tract-wise and voxel-wise using tract-based spatial statistics. Analyses used linear and mixed effect models while correcting for multiple testing using false discovery rate and Bonferroni for correlated endpoint measures. Our results show the following: (i) tract-wise lower fractional anisotropy in the left retrolenticular part of the internal capsule at baseline predicted both worse progression of depressive symptoms in untreated participants and more improvement in treated participants (fractional anisotropy × any intervention, PFDR = 0.053, Pcorr = 0.045). (ii) Only the cognitive behavioural therapy for insomnia + circadian rhythm support intervention induced a trend-level mean diffusivity decrease in the right superior corona radiata (PFDR = 0.128, Pcorr = 0.108), and individuals with a stronger mean diffusivity decrease showed a stronger alleviation of insomnia (R = 0.20, P = 0.035). In summary, individual differences in risk and treatment-supported resilience of depression involve white matter microstructure. Future studies could target the role of the left retrolenticular part of the internal capsule and right superior corona radiata and the brain areas they connect.

5.
PLoS One ; 18(8): e0285683, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37616243

RESUMEN

An important step in the analysis of magnetic resonance imaging (MRI) data for neuroimaging is the automated segmentation of white matter hyperintensities (WMHs). Fluid Attenuated Inversion Recovery (FLAIR-weighted) is an MRI contrast that is particularly useful to visualize and quantify WMHs, a hallmark of cerebral small vessel disease and Alzheimer's disease (AD). In order to achieve high spatial resolution in each of the three voxel dimensions, clinical MRI protocols are evolving to a three-dimensional (3D) FLAIR-weighted acquisition. The current study details the deployment of deep learning tools to enable automated WMH segmentation and characterization from 3D FLAIR-weighted images acquired as part of a national AD imaging initiative. Based on data from the ongoing Norwegian Disease Dementia Initiation (DDI) multicenter study, two 3D models-one off-the-shelf from the NVIDIA nnU-Net framework and the other internally developed-were trained, validated, and tested. A third cutting-edge Deep Bayesian network model (HyperMapp3r) was implemented without any de-novo tuning to serve as a comparison architecture. The 2.5D in-house developed and 3D nnU-Net models were trained and validated in-house across five national collection sites among 441 participants from the DDI study, of whom 194 were men and whose average age was (64.91 +/- 9.32) years. Both an external dataset with 29 cases from a global collaborator and a held-out subset of the internal data from the 441 participants were used to test all three models. These test sets were evaluated independently. The ground truth human-in-the-loop segmentation was compared against five established WMH performance metrics. The 3D nnU-Net had the highest performance out of the three tested networks, outperforming both the internally developed 2.5D model and the SOTA Deep Bayesian network with an average dice similarity coefficient score of 0.76 +/- 0.16. Our findings demonstrate that WMH segmentation models can achieve high performance when trained exclusively on FLAIR input volumes that are 3D volumetric acquisitions. Single image input models are desirable for ease of deployment, as reflected in the current embedded clinical research project. The 3D nnU-Net had the highest performance, which suggests a way forward for our need to automate WMH segmentation while also evaluating performance metrics during on-going data collection and model retraining.


Asunto(s)
Enfermedad de Alzheimer , Aprendizaje Profundo , Leucoaraiosis , Sustancia Blanca , Masculino , Humanos , Persona de Mediana Edad , Anciano , Femenino , Teorema de Bayes , Sustancia Blanca/diagnóstico por imagen , Imagen por Resonancia Magnética , Neuroimagen , Enfermedad de Alzheimer/diagnóstico por imagen
7.
MAGMA ; 36(1): 65-77, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36103029

RESUMEN

OBJECTIVE: To improve accelerated MRI reconstruction through a densely connected cascading deep learning reconstruction framework. MATERIALS AND METHODS: A cascading deep learning reconstruction framework (reference model) was modified by applying three architectural modifications: input-level dense connections between cascade inputs and outputs, an improved deep learning sub-network, and long-range skip-connections between subsequent deep learning networks. An ablation study was performed, where five model configurations were trained on the NYU fastMRI neuro dataset with an end-to-end scheme conjunct on four- and eightfold acceleration. The trained models were evaluated by comparing their respective structural similarity index measure (SSIM), normalized mean square error (NMSE), and peak signal to noise ratio (PSNR). RESULTS: The proposed densely interconnected residual cascading network (DIRCN), utilizing all three suggested modifications achieved a SSIM improvement of 8% and 11%, a NMSE improvement of 14% and 23%, and a PSNR improvement of 2% and 3% for four- and eightfold acceleration, respectively. In an ablation study, the individual architectural modifications all contributed to this improvement for both acceleration factors, by improving the SSIM, NMSE, and PSNR with approximately 2-4%, 4-9%, and 0.5-1%, respectively. CONCLUSION: The proposed architectural modifications allow for simple adjustments on an already existing cascading framework to further improve the resulting reconstructions.


Asunto(s)
Aprendizaje Profundo , Imagen por Resonancia Magnética , Relación Señal-Ruido , Aceleración
8.
Transl Psychiatry ; 12(1): 161, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35422097

RESUMEN

Cortical microstructure is influenced by circadian rhythm and sleep deprivation, yet the precise underpinnings of these effects remain unclear. The ratio between T1-weighted and T2-weighted magnetic resonance images (T1w/T2w ratio) has been linked to myelin levels and dendrite density and may offer novel insight into the intracortical microstructure of the sleep deprived brain. Here, we examined intracortical T1w/T2w ratio in 41 healthy young adults (26 women) before and after 32 h of either sleep deprivation (n = 18) or a normal sleep-wake cycle (n = 23). Linear models revealed significant group differences in T1w/T2w ratio change after 32 h in four clusters, including bilateral effects in the insular, cingulate, and superior temporal cortices, comprising regions involved in attentional, auditory and pain processing. Across clusters, the sleep deprived group showed an increased T1w/T2w ratio, while the normal sleep-wake group exhibited a reduced ratio. These changes were not explained by in-scanner head movement, and 95% of the effects across clusters remained significant after adjusting for cortical thickness and hydration. Compared with a normal sleep-wake cycle, 32 h of sleep deprivation yields intracortical T1w/T2w ratio increases. While the intracortical changes detected by this study could reflect alterations in myelin or dendritic density, or both, histological analyses are needed to clarify the precise underlying cortical processes.


Asunto(s)
Imagen por Resonancia Magnética , Privación de Sueño , Encéfalo , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Vaina de Mielina/patología , Privación de Sueño/diagnóstico por imagen , Adulto Joven
9.
MAGMA ; 35(1): 105-112, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34213687

RESUMEN

OBJECTIVE: To investigate the effect of inter-operator variability in arterial input function (AIF) definition on kinetic parameter estimates (KPEs) from dynamic contrast-enhanced (DCE) MRI in patients with high-grade gliomas. METHODS: The study included 118 DCE series from 23 patients. AIFs were measured by three domain experts (DEs), and a population AIF (pop-AIF) was constructed from the measured AIFs. The DE-AIFs, pop-AIF and AUC-normalized DE-AIFs were used for pharmacokinetic analysis with the extended Tofts model. AIF-dependence of KPEs was assessed by intraclass correlation coefficient (ICC) analysis, and the impact on relative longitudinal change in Ktrans was assessed by Fleiss' kappa (κ). RESULTS: There was a moderate to substantial agreement (ICC 0.51-0.76) between KPEs when using DE-AIFs, while AUC-normalized AIFs yielded ICC 0.77-0.95 for Ktrans, kep and ve and ICC 0.70 for vp. Inclusion of the pop-AIF did not reduce agreement. Agreement in relative longitudinal change in Ktrans was moderate (κ = 0.591) using DE-AIFs, while AUC-normalized AIFs gave substantial (κ = 0.809) agreement. DISCUSSION: AUC-normalized AIFs can reduce the variation in kinetic parameter results originating from operator input. The pop-AIF presented in this work may be applied in absence of a satisfactory measurement.


Asunto(s)
Medios de Contraste , Imagen por Resonancia Magnética , Algoritmos , Arterias/diagnóstico por imagen , Medios de Contraste/farmacocinética , Humanos , Imagen por Resonancia Magnética/métodos , Reproducibilidad de los Resultados
11.
Neuroimage ; 226: 117540, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33186715

RESUMEN

Sleep deprivation influences several critical functions, yet how it affects human brain white matter (WM) is not well understood. The aim of the present work was to investigate the effect of 32 hours of sleep deprivation on WM microstructure compared to changes observed in a normal sleep-wake cycle (SWC). To this end, we utilised diffusion weighted imaging (DWI) including the diffusion tensor model, diffusion kurtosis imaging and the spherical mean technique, a novel biophysical diffusion model. 46 healthy adults (23 sleep deprived vs 23 with normal SWC) underwent DWI across four time points (morning, evening, next day morning and next day afternoon, after a total of 32 hours). Linear mixed models revealed significant group × time interaction effects, indicating that sleep deprivation and normal SWC differentially affect WM microstructure. Voxel-wise comparisons showed that these effects spanned large, bilateral WM regions. These findings provide important insight into how sleep deprivation affects the human brain.


Asunto(s)
Encéfalo/patología , Imagen de Difusión Tensora/métodos , Privación de Sueño/patología , Sustancia Blanca/patología , Adulto , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Masculino , Sueño/fisiología , Privación de Sueño/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen
12.
Neuroimage ; 219: 117031, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32526385

RESUMEN

Arterial spin labeling (ASL) has undergone significant development since its inception, with a focus on improving standardization and reproducibility of its acquisition and quantification. In a community-wide effort towards robust and reproducible clinical ASL image processing, we developed the software package ExploreASL, allowing standardized analyses across centers and scanners. The procedures used in ExploreASL capitalize on published image processing advancements and address the challenges of multi-center datasets with scanner-specific processing and artifact reduction to limit patient exclusion. ExploreASL is self-contained, written in MATLAB and based on Statistical Parameter Mapping (SPM) and runs on multiple operating systems. To facilitate collaboration and data-exchange, the toolbox follows several standards and recommendations for data structure, provenance, and best analysis practice. ExploreASL was iteratively refined and tested in the analysis of >10,000 ASL scans using different pulse-sequences in a variety of clinical populations, resulting in four processing modules: Import, Structural, ASL, and Population that perform tasks, respectively, for data curation, structural and ASL image processing and quality control, and finally preparing the results for statistical analyses on both single-subject and group level. We illustrate ExploreASL processing results from three cohorts: perinatally HIV-infected children, healthy adults, and elderly at risk for neurodegenerative disease. We show the reproducibility for each cohort when processed at different centers with different operating systems and MATLAB versions, and its effects on the quantification of gray matter cerebral blood flow. ExploreASL facilitates the standardization of image processing and quality control, allowing the pooling of cohorts which may increase statistical power and discover between-group perfusion differences. Ultimately, this workflow may advance ASL for wider adoption in clinical studies, trials, and practice.


Asunto(s)
Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Angiografía por Resonancia Magnética/métodos , Algoritmos , Circulación Cerebrovascular/fisiología , Humanos , Reproducibilidad de los Resultados , Relación Señal-Ruido , Programas Informáticos , Marcadores de Spin
13.
Neuroscience ; 440: 146-159, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32473275

RESUMEN

The left inferior frontal gyrus and the bilateral ventral striatum are thought to be involved in motivation-mediated decision-making. Antipsychotics may influence this relationship, and atypical antipsychotics improve secondary negative symptoms in schizophrenia, such as loss of motivation, although the acute effects of pharmacological medication on motivation are not fully understood. In this single-blinded, randomized controlled trial, 49 healthy volunteers were randomized into three groups to receive a single dose of haloperidol, aripiprazole or placebo. Between 4.0 and 5.6 h later, participant's brain blood-oxygen-level dependent (BOLD) activity was recorded using functional magnetic resonance imaging (fMRI) while completing a perceptual decision-making fMRI task consisting of one neutral and one motivated condition. Response bias, reflecting the participant's willingness to say that the target stimulus is present, was calculated using signal detection theory. Concurrent with widespread changes in BOLD signal in the motivated vs. neutral condition, a less conservative, mathematically optimal response bias was observed in the motivated condition across the whole sample. Within-group differences in BOLD signal in the left inferior frontal gyrus and bilateral ventral striatum were observed between conditions in the aripiprazole and haloperidol groups, but not in the placebo group. No robust between-group differences in brain activity in the left inferior frontal gyrus or the bilateral ventral striatum were found. Overall, we found no robust evidence for an effect of either aripiprazole or haloperidol on motivationally mediated behavior. An interesting pattern of correlations possibly related to pharmacologically induced alterations in the dopamine system was observed, although findings remain inconclusive and must be replicated in larger samples.


Asunto(s)
Antipsicóticos , Antipsicóticos/farmacología , Aripiprazol , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Motivación
14.
Neuroimage ; 212: 116682, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32114147

RESUMEN

Recently, several magnetic resonance imaging (MRI) studies have reported time-of-day effects on brain structure and function. Due to the possibility that time-of-day effects reflect mechanisms of circadian regulation, the aim of this prospective study was to assess these effects while under strict experimental control of variables that might influence biological clocks, such as caffeine intake and exposure to blue-emitting light. In addition, the current study assessed whether time-of-day effects were driven by changes to extracellular space, by including estimations of non-Gaussian diffusion metrics obtained from diffusion kurtosis imaging, white matter tract integrity and the spherical mean technique, in addition to conventional diffusion tensor imaging -derived parameters. Participants were 47 healthy adults who underwent diffusion-weighted imaging in the morning and evening of the same day. Morning and evening scans were compared using voxel-wise tract based spatial statistics and permutation testing. A day of wakefulness was associated with widespread increases in fractional anisotropy, indices of kurtosis and indices of the axonal water fraction. In addition, wakefulness was associated with widespread decreases in radial diffusivity, both in the single compartment and in extra-axonal space. These results suggest that an increase in the intra-axonal space relative to the extra-axonal volume underlies time-of-day effects in human white matter, which is in line with activity-induced reductions to the extracellular volume. These findings provide important insight into possible mechanisms driving time-of-day effects in MRI.


Asunto(s)
Encéfalo , Imagen de Difusión por Resonancia Magnética/métodos , Espacio Extracelular , Vigilia , Sustancia Blanca , Adulto , Femenino , Humanos , Masculino , Factores de Tiempo
15.
Magn Reson Imaging ; 68: 106-112, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32004711

RESUMEN

BACKGROUND: The aim of this study was to investigate changes in structural magnetic resonance imaging (MRI) according to the RANO criteria and perfusion- and permeability related metrics derived from dynamic contrast-enhanced MRI (DCE) and dynamic susceptibility contrast MRI (DSC) during radiochemotherapy for prediction of progression and survival in glioblastoma. METHODS: Twenty-three glioblastoma patients underwent biweekly structural and perfusion MRI before, during, and two weeks after a six weeks course of radiochemotherapy. Temporal trends of tumor volume and the perfusion-derived parameters cerebral blood volume (CBV) and blood flow (CBF) from DSC and DCE, in addition to contrast agent capillary transfer constant (Ktrans) from DCE, were assessed. The patients were separated in two groups by median survival and differences between the two groups explored. Clinical- and MRI metrics were investigated using univariate and multivariate survival analysis and a predictive survival index was generated. RESULTS: Median survival was 19.2 months. A significant decrease in contrast-enhancing tumor size and CBV and CBF in both DCE- and DSC-derived parameters was seen during and two weeks past radiochemotherapy (p < 0.05). A 10%/30% increase in Ktrans/CBF two weeks after finishing radiochemotherapy resulted in significant shorter survival (13.9/16.8 vs. 31.5/33.1 months; p < 0.05). Multivariate analysis revealed an index using change in Ktrans and relative CBV from DSC significantly corresponding with survival time in months (r2 = 0.843; p < 0.001). CONCLUSIONS: Significant temporal changes are evident during radiochemotherapy in tumor size (after two weeks) and perfusion-weighted MRI-derived parameters (after four weeks) in glioblastoma patients. While DCE-based metrics showed most promise for early survival prediction, a multiparametric combination of both DCE- and DSC-derived metrics gave additional information.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Volumen Sanguíneo Cerebral , Medios de Contraste/farmacología , Glioblastoma/diagnóstico por imagen , Adulto , Anciano , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Circulación Cerebrovascular , Quimioradioterapia , Progresión de la Enfermedad , Femenino , Glioblastoma/mortalidad , Glioblastoma/patología , Humanos , Estimación de Kaplan-Meier , Angiografía por Resonancia Magnética , Masculino , Persona de Mediana Edad , Análisis Multivariante , Valor Predictivo de las Pruebas , Supervivencia sin Progresión , Modelos de Riesgos Proporcionales , Análisis de Regresión , Resultado del Tratamiento
16.
Sci Rep ; 9(1): 19898, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882644

RESUMEN

In a blind, dual-center, multi-observer setting, we here identify the pre-treatment radiologic features by Magnetic Resonance Imaging (MRI) associated with subsequent treatment options in patients with glioma. Study included 220 previously untreated adult patients from two institutions (94 + 126 patients) with a histopathologically confirmed diagnosis of glioma after surgery. Using a blind, cross-institutional and randomized setup, four expert neuroradiologists recorded radiologic features, suggested glioma grade and corresponding confidence. The radiologic features were scored using the Visually AcceSAble Rembrandt Images (VASARI) standard. Results were retrospectively compared to patient treatment outcomes. Our findings show that patients receiving a biopsy or a subtotal resection were more likely to have a tumor with pathological MRI-signal (by T2-weighted Fluid-Attenuated Inversion Recovery) crossing the midline (Hazard Ratio; HR = 1.30 [1.21-1.87], P < 0.001), and those receiving a biopsy sampling more often had multifocal lesions (HR = 1.30 [1.16-1.64], P < 0.001). For low-grade gliomas (N = 50), low observer confidence in the radiographic readings was associated with less chance of a total resection (P = 0.002) and correlated with the use of a more comprehensive adjuvant treatment protocol (Spearman = 0.48, P < 0.001). This study may serve as a guide to the treating physician by identifying the key radiologic determinants most likely to influence the treatment decision-making process.


Asunto(s)
Toma de Decisiones Clínicas/métodos , Glioma/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Encefálicas/diagnóstico por imagen , Femenino , Humanos , Masculino , Persona de Mediana Edad , Clasificación del Tumor/métodos , Modelos de Riesgos Proporcionales , Adulto Joven
18.
Neuroimage ; 186: 497-509, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30471387

RESUMEN

Elucidating the neurobiological effects of sleep and wake is an important goal of the neurosciences. Whether and how human cerebral blood flow (CBF) changes during the sleep-wake cycle remain to be clarified. Based on the synaptic homeostasis hypothesis of sleep and wake, we hypothesized that a day of wake and a night of sleep deprivation would be associated with gray matter resting CBF (rCBF) increases and that sleep would be associated with rCBF decreases. Thirty-eight healthy adult males (age 22.1 ±â€¯2.5 years) underwent arterial spin labeling perfusion magnetic resonance imaging at three time points: in the morning after a regular night's sleep, the evening of the same day, and the next morning, either after total sleep deprivation (n = 19) or a night of sleep (n = 19). All analyses were adjusted for hematocrit and head motion. rCBF increased from morning to evening and decreased after a night of sleep. These effects were most prominent in bilateral hippocampus, amygdala, thalamus, and in the occipital and sensorimotor cortices. Group × time interaction analyses for evening versus next morning revealed significant interaction in bilateral lateral and medial occipital cortices and in bilateral insula, driven by rCBF increases in the sleep deprived individuals and decreases in the sleepers, respectively. Furthermore, group × time interaction analyses for first morning versus next morning showed significant effects in medial and lateral occipital cortices, in anterior cingulate gyrus, and in the insula, in both hemispheres. These effects were mainly driven by CBF increases from TP1 to TP3 in the sleep deprived individuals. There were no associations between the rCBF changes and sleep characteristics, vigilant attention, or subjective sleepiness that remained significant after adjustments for multiple analyses. Altogether, these results encourage future studies to clarify mechanisms underlying sleep-related rCBF changes.


Asunto(s)
Corteza Cerebral/fisiología , Circulación Cerebrovascular/fisiología , Neuroimagen Funcional/métodos , Sustancia Gris/fisiología , Imagen por Resonancia Magnética/métodos , Privación de Sueño/fisiopatología , Sueño/fisiología , Vigilia/fisiología , Adulto , Atención/fisiología , Corteza Cerebral/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Humanos , Masculino , Privación de Sueño/diagnóstico por imagen , Somnolencia , Adulto Joven
20.
Radiology ; 285(2): 434-444, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28885891

RESUMEN

Purpose To test for measurable visual enhancement of the dentate nucleus (DN) on unenhanced T1-weighted magnetic resonance (MR) images in a cohort of patients with a primary brain tumor who had not received linear gadolinium-based contrast agents (GBCAs) but had received many injections of macrocyclic GBCAs. Materials and Methods Seventeen patients with high-grade gliomas who had received 10-44 administrations of the macrocyclic GBCA gadobutrol (0.1 mmol/kg of body weight) were retrospectively included in this regional ethics committee-approved study. Two neuroradiologists inspected T1-weighted MR images with optimized window settings to visualize small differences in contrast at the baseline and at the last examination for the presence of visual DN signal enhancement. Signal intensity (SI) in the DN was normalized to the SI of the pons, and a one-sample t test was used to test for differences between baseline normalized SI (nSI) in the DN (nSIDN) and the average change in nSIDN of all postbaseline MR imaging sessions (ΔnSIDNavg) or the change in nSIDN from baseline to the last MR imaging session (ΔnSIDN). Linear and quadratic correlation analyses were used to examine the association between the number of macrocyclic GBCA administrations and ΔnSIDN or ΔnSIDNavg. Results The mean ± standard deviation number of macrocyclic GBCA administrations was 22.2 ± 10.6 administered throughout 706 days ± 454. Visually appreciable signal enhancement was observed in two patients who had received 37 and 44 macrocyclic GBCA injections. Mean ΔnSIDN was greater than zero (0.03 ± 0.05; P = .016), and there was a significant linear association between the number of macrocyclic GBCA injections and ΔnSIDN (r = 0.69, P = .002) and ΔnSIDNavg (r = 0.77, P < .001). Conclusion A small but statistically significant dose-dependent T1-weighted signal enhancement was observed in the DN after multiple macrocyclic GBCA injections. Visually appreciable enhancement in the DN was observed on contrast-optimized images in two patients who had received 37 and 44 standard doses of macrocyclic GBCAs. © RSNA, 2017 Online supplemental material is available for this article.


Asunto(s)
Núcleos Cerebelosos/diagnóstico por imagen , Medios de Contraste/administración & dosificación , Imagen por Resonancia Magnética/métodos , Compuestos Organometálicos/administración & dosificación , Adulto , Anciano , Medios de Contraste/uso terapéutico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Compuestos Organometálicos/uso terapéutico , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...