Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Kidney Int Rep ; 9(5): 1387-1396, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38707801

RESUMEN

Introduction: Primary hyperoxaluria (PH) is a rare genetic disorder of hepatic glyoxylate metabolism. Nedosiran is an RNA interference (RNAi) therapeutic that the US Food and Drug Administration has approved for treatment of PH1. PHYOX3 is a trial evaluating monthly nedosiran in patients with PH. Methods: In this PHYOX3 interim analysis, participants with PH1 who continued from a single-dose nedosiran trial (PHYOX1), with no previous kidney or liver transplantation, dialysis, or evidence of systemic oxalosis were eligible. The safety and efficacy of once-monthly nedosiran was assessed over 30 months. Results: Thirteen participants completed PHYOX1 and continued into PHYOX3. At baseline, the mean (SD) and median (range) age was 24.2 (6.6) years and 23.0 (14-39) years, respectively; 53.8% were female and 61.5% were White. Mean estimated glomerular filtration rate (eGFR) remained stable (62-84.2 mL/min per 1.73 m2) to month 30. Mean 24-hour urinary oxalate (Uox) excretion showed a sustained reduction from baseline of ≥60% at every visit (months 2-30). From month 2, at least 10 of 13 (76.9%) participants achieved normal (<0.46 mmol/24h; upper limit of assay-normal [ULN]) or near-normal (≥0.46 to <0.60 mmol/24h; ≥ULN to <1.3 × ULN) 24-hour Uox excretion. All participants experienced ≥1 adverse event (AE), mostly mild or moderate in severity (primarily, injection site events). Three serious, not treatment-related AEs were reported; there were no deaths or study discontinuations due to AEs. Conclusion: Nedosiran was well-tolerated in patients with PH1, and treatment resulted in a sustained, substantial reduction in Uox excretion for at least 30 months in this long-term study. No safety signals have been identified to date. The PHYOX3 study is ongoing.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38759658

RESUMEN

BACKGROUND: Homozygous familial hypercholesterolaemia (HoFH) is a rare genetic disease characterised by extremely high plasma LDL cholesterol from birth, causing atherosclerotic cardiovascular disease at a young age. Lipoprotein apheresis in combination with lipid-lowering drugs effectively reduce LDL cholesterol, but long-term health outcomes of such treatment are unknown. We aimed to investigate the long-term cardiovascular outcomes associated with lipoprotein apheresis initiated in childhood or adolescence. METHODS: In this cohort study, data were drawn from the HoFH International Clinical Collaboration (HICC) and the international registry for Children with Homozygous Hypercholesterolemia on Lipoprotein Apheresis (CHAIN). An overall cohort included patients diagnosed with HoFH aged 0-18 years who were alive and in follow-up between Jan 1, 2010, and Nov 8, 2021, and whose high plasma LDL cholesterol concentrations made them eligible for lipoprotein apheresis. To compare cardiovascular outcomes, patients who initiated lipoprotein apheresis in childhood (lipoprotein apheresis group) and patients who only received lipid-lowering drugs (pharmacotherapy-only group) were matched by sex and untreated plasma LDL cholesterol concentrations. The primary outcome was a composite of cardiovascular death, myocardial infarction, ischaemic stroke, percutaneous coronary intervention, coronary artery bypass grafting, aortic valve replacement, peripheral artery disease, carotid endarterectomy, angina pectoris, and supra-aortic or aortic stenosis (collectively referred to as atherosclerotic cardiovascular disease), for which survival analyses were performed in the matched cohort. Cox regression analyses were used to compare disease-free survival between cohorts and to calculate hazard ratio (HR) and 95% CI adjusted for sex, age at diagnosis, untreated plasma LDL cholesterol concentration, and number of lipid-lowering therapies other than lipoprotein apheresis. FINDINGS: The overall cohort included 404 patients with a median age at diagnosis of 6·0 years (IQR 3·0-9·5) and median untreated plasma LDL cholesterol of 17·8 mmol/L (14·7-20·8). The matched cohorts included 250 patients (125 patients per group), with a median untreated LDL cholesterol of 17·2 mmol/L (14·8-19·7). Mean reduction in plasma LDL cholesterol concentrations between baseline and final follow-up was greater in the lipoprotein apheresis group (-55% [95% CI -60 to -51] vs -31% [-36 to -25]; p<0·0001). Patients in the lipoprotein apheresis group had longer atherosclerotic cardiovascular disease-free survival (adjusted HR 0·52 [95% CI 0·32-0·85]) and longer cardiovascular death-free survival (0·0301 [0·0021-0·4295]). Cardiovascular death was more common in the pharmacotherapy-only group than in the lipoprotein apheresis group (ten [8%] vs one [1%]; p=0·010), whereas median age at coronary artery bypass grafting was lower in the lipoprotein apheresis group than in the pharmacotherapy-only group (15·0 years [IQR 12·0-24·0] vs 30·5 years [19·0-33·8]; p=0·037). INTERPRETATION: Among patients with HoFH, lipoprotein apheresis initiated during childhood and adolescence is associated with reduced long-term risk of atherosclerotic cardiovascular disease and death, and clear benefits of early initiation of high-frequency treatment on reducing plasma cholesterol were found. Consensus recommendations are now needed to guide more widespread and timely use of lipoprotein apheresis for children with HoFH, and research is required to further optimise treatment and ensure benefits of early and aggressive treatment delivery are balanced against effects on quality of life. FUNDING: Amsterdam University Medical Centers, Location Academic Medical Center; Perelman School of Medicine at the University of Pennsylvania; European Atherosclerosis Society; and the US National Heart, Lung, and Blood Institute, National Institutes of Health.

3.
Atherosclerosis ; 392: 117525, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38598969

RESUMEN

Homozygous familial hypercholesterolaemia is a life-threatening genetic condition, which causes extremely elevated LDL-C levels and atherosclerotic cardiovascular disease very early in life. It is vital to start effective lipid-lowering treatment from diagnosis onwards. Even with dietary and current multimodal pharmaceutical lipid-lowering therapies, LDL-C treatment goals cannot be achieved in many children. Lipoprotein apheresis is an extracorporeal lipid-lowering treatment, which is used for decades, lowering serum LDL-C levels by more than 70% directly after the treatment. Data on the use of lipoprotein apheresis in children with homozygous familial hypercholesterolaemia mainly consists of case-reports and case-series, precluding strong evidence-based guidelines. We present a consensus statement on lipoprotein apheresis in children based on the current available evidence and opinions from experts in lipoprotein apheresis from over the world. It comprises practical statements regarding the indication, methods, treatment goals and follow-up of lipoprotein apheresis in children with homozygous familial hypercholesterolaemia and on the role of lipoprotein(a) and liver transplantation.


Asunto(s)
Eliminación de Componentes Sanguíneos , Consenso , Homocigoto , Humanos , Eliminación de Componentes Sanguíneos/métodos , Niño , Resultado del Tratamiento , Lipoproteína(a)/sangre , LDL-Colesterol/sangre , Adolescente , Trasplante de Hígado , Biomarcadores/sangre , Hiperlipoproteinemia Tipo I/diagnóstico , Hiperlipoproteinemia Tipo I/terapia , Hiperlipoproteinemia Tipo I/sangre , Hiperlipoproteinemia Tipo I/genética , Fenotipo , Hiperlipoproteinemia Tipo II/terapia , Hiperlipoproteinemia Tipo II/sangre , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/diagnóstico , Preescolar , Lipoproteínas/sangre , Predisposición Genética a la Enfermedad
4.
J Inherit Metab Dis ; 47(2): 280-288, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38200664

RESUMEN

Glyoxylate is a key metabolite generated from various precursor substrates in different subcellular compartments including mitochondria, peroxisomes, and the cytosol. The fact that glyoxylate is a good substrate for the ubiquitously expressed enzyme lactate dehydrogenase (LDH) requires the presence of efficient glyoxylate detoxification systems to avoid the formation of oxalate. Furthermore, this detoxification needs to be compartment-specific since LDH is actively present in multiple subcellular compartments including peroxisomes, mitochondria, and the cytosol. Whereas the identity of these protection systems has been established for both peroxisomes and the cytosol as concluded from the deficiency of alanine glyoxylate aminotransferase (AGT) in primary hyperoxaluria type 1 (PH1) and glyoxylate reductase (GR) in PH2, the glyoxylate protection system in mitochondria has remained less well defined. In this manuscript, we show that the enzyme glyoxylate reductase has a bimodal distribution in human embryonic kidney (HEK293), hepatocellular carcinoma (HepG2), and cervical carcinoma (HeLa) cells and more importantly, in human liver, and is actively present in both the mitochondrial and cytosolic compartments. We conclude that the metabolism of glyoxylate in humans requires the complicated interaction between different subcellular compartments within the cell and discuss the implications for the different primary hyperoxalurias.


Asunto(s)
Oxidorreductasas de Alcohol , Mitocondrias Hepáticas , Transaminasas , Humanos , Mitocondrias Hepáticas/metabolismo , Células HEK293 , Oxalatos/metabolismo , Hígado/metabolismo , Glioxilatos/metabolismo
6.
medRxiv ; 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38014132

RESUMEN

Homozygous familial hypercholesterolaemia is a life-threatening genetic condition, which causes extremely elevated LDL-C levels and atherosclerotic cardiovascular disease very early in life. It is vital to start effective lipid-lowering treatment from diagnosis onwards. Even with dietary and current multimodal pharmaceutical lipid-lowering therapies, LDL-C treatment goals cannot be achieved in many children. Lipoprotein apheresis is an extracorporeal lipid-lowering treatment, which is well established since three decades, lowering serum LDL-C levels by more than 70% per session. Data on the use of lipoprotein apheresis in children with homozygous familial hypercholesterolaemia mainly consists of case-reports and case-series, precluding strong evidence-based guidelines. We present a consensus statement on lipoprotein apheresis in children based on the current available evidence and opinions from experts in lipoprotein apheresis from over the world. It comprises practical statements regarding the indication, methods, treatment targets and follow-up of lipoprotein apheresis in children with homozygous familial hypercholesterolaemia and on the role of lipoprotein(a) and liver transplantation.

7.
Kidney Int Rep ; 8(10): 2029-2042, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37849991

RESUMEN

Introduction: Primary hyperoxaluria type 1 (PH1) has a highly heterogeneous disease course. Apart from the c.508G>A (p.Gly170Arg) AGXT variant, which imparts a relatively favorable outcome, little is known about determinants of kidney failure. Identifying these is crucial for disease management, especially in this era of new therapies. Methods: In this retrospective study of 932 patients with PH1 included in the OxalEurope registry, we analyzed genotype-phenotype correlations as well as the impact of nephrocalcinosis, urolithiasis, and urinary oxalate and glycolate excretion on the development of kidney failure, using survival and mixed model analyses. Results: The risk of developing kidney failure was the highest for 175 vitamin-B6 unresponsive ("null") homozygotes and lowest for 155 patients with c.508G>A and c.454T>A (p.Phe152Ile) variants, with a median age of onset of kidney failure of 7.8 and 31.8 years, respectively. Fifty patients with c.731T>C (p.Ile244Thr) homozygote variants had better kidney survival than null homozygotes (P = 0.003). Poor outcomes were found in patients with other potentially vitamin B6-responsive variants. Nephrocalcinosis increased the risk of kidney failure significantly (hazard ratio [HR] 3.17 [2.03-4.94], P < 0.001). Urinary oxalate and glycolate measurements were available in 620 and 579 twenty-four-hour urine collections from 117 and 87 patients, respectively. Urinary oxalate excretion, unlike glycolate, was higher in patients who subsequently developed kidney failure (P = 0.034). However, the 41% intraindividual variation of urinary oxalate resulted in wide confidence intervals. Conclusion: In conclusion, homozygosity for AGXT null variants and nephrocalcinosis were the strongest determinants for kidney failure in PH1.

11.
Clin Kidney J ; 16(4): 745-755, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37007701

RESUMEN

Background: Data on comorbidities in children on kidney replacement therapy (KRT) are scarce. Considering their high relevance for prognosis and treatment, this study aims to analyse the prevalence and implications of comorbidities in European children on KRT. Methods: We included data from patients <20 years of age when commencing KRT from 2007 to 2017 from 22 European countries within the European Society of Paediatric Nephrology/European Renal Association Registry. Differences between patients with and without comorbidities in access to kidney transplantation (KT) and patient and graft survival were estimated using Cox regression. Results: Comorbidities were present in 33% of the 4127 children commencing KRT and the prevalence has steadily increased by 5% annually since 2007. Comorbidities were most frequent in high-income countries (43% versus 24% in low-income countries and 33% in middle-income countries). Patients with comorbidities had a lower access to transplantation {adjusted hazard ratio [aHR] 0.67 [95% confidence interval (CI) 0.61-0.74]} and a higher risk of death [aHR 1.79 (95% CI 1.38-2.32)]. The increased mortality was only seen in dialysis patients [aHR 1.60 (95% CI 1.21-2.13)], and not after KT. For both outcomes, the impact of comorbidities was stronger in low-income countries. Graft survival was not affected by the presence of comorbidities [aHR for 5-year graft failure 1.18 (95% CI 0.84-1.65)]. Conclusions: Comorbidities have become more frequent in children on KRT and reduce their access to transplantation and survival, especially when remaining on dialysis. KT should be considered as an option in all paediatric KRT patients and efforts should be made to identify modifiable barriers to KT for children with comorbidities.

12.
Urolithiasis ; 51(1): 80, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37118061

RESUMEN

Nedosiran is an N-acetyl-D-galactosamine (GalNAc)-conjugated RNA interference agent targeting hepatic lactate dehydrogenase (encoded by the LDHA gene), the putative enzyme mediating the final step of oxalate production in all three genetic subtypes of primary hyperoxaluria (PH). This phase I study assessed the safety, pharmacokinetics (PK), and pharmacodynamics (PD) of subcutaneous nedosiran in patients with PH subtype 3 (PH3) and an estimated glomerular filtration rate  ≥ 30 mL/min/1.73 m2. Single-dose nedosiran 3 mg/kg or placebo was administered in a randomized (2:1), double-blinded manner. Safety/tolerability, 24-h urinary oxalate (Uox) concentrations, and plasma nedosiran concentrations were assessed. The main PD endpoint was the proportion of participants achieving a > 30% decrease from baseline in 24-h Uox at two consecutive visits. Six participants enrolled in and completed the study (nedosiran, n = 4; placebo, n = 2). Nedosiran was well-tolerated and lacked safety concerns. Although the PD response was not met, 24-h Uox excretion declined 24.5% in the nedosiran group and increased 10.5% in the placebo group at Day 85. Three of four nedosiran recipients had a > 30% reduction in 24-h Uox excretion during at least one visit, and one attained near-normal (i.e., ≥ 0.46 to < 0.60 mmol/24 h; ≥ 1.0 to < 1.3 × upper limit of the normal reference range) 24-h Uox excretion from Day 29 to Day 85. Nedosiran displayed predictable plasma PK. The acceptable safety and trend toward Uox-lowering after single-dose nedosiran treatment enables further clinical development of nedosiran in patients with PH3 who currently have no viable therapeutic options. A plain language summary is available in the supplementary information.


Asunto(s)
Hiperoxaluria Primaria , Hiperoxaluria , Humanos , Hiperoxaluria Primaria/tratamiento farmacológico , Hiperoxaluria Primaria/genética , Hiperoxaluria/orina , Oxalatos/orina , Tasa de Filtración Glomerular
13.
BMC Pediatr ; 23(1): 205, 2023 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-37120521

RESUMEN

BACKGROUND: The prevalence of obesity-related co-morbidities is rising parallel to the childhood obesity epidemic. High blood pressure (BP), as one of these co-morbidities, is detected nowadays at increasingly younger ages. The diagnosis of elevated BP and hypertension, especially in the childhood population, presents a challenge to clinicians. The added value of ambulatory blood pressure measurement (ABPM) in relation to office blood pressure (OBP) measurements in obese children is unclear. Furthermore, it is unknown how many overweight and obese children have an abnormal ABPM pattern. In this study we evaluated ABPM patterns in a population of overweight and obese children and adolescents, and compared these patterns with regular OBP measurements. METHODS: In this cross-sectional study in overweight or obese children and adolescents aged 4-17 years who were referred to secondary pediatric obesity care in a large general hospital in The Netherlands, OBP was measured during a regular outpatient clinic visit. Additionally, all participants underwent a 24-hour ABPM on a regular week-day. Outcome measures were OBP, mean ambulatory SBP and DBP, BP load (percentage of readings above the ambulatory 95th blood pressure percentiles), ambulatory BP pattern (normal BP, white-coat hypertension, elevated BP, masked hypertension, ambulatory hypertension), and BP dipping. RESULTS: We included 82 children aged 4-17 years. They had a mean BMI Z-score of 3.3 (standard deviation 0.6). Using ABPM, 54.9% of the children were normotensive (95% confidence interval 44.1-65.2), 26.8% had elevated BP, 9.8% ambulatory hypertension, 3.7% masked hypertension, and 4.9% white-coat hypertension. An isolated night-time BP load > 25% was detected in almost a quarter of the children. 40% of the participants lacked physiologic nocturnal systolic BP dipping. In the group of children with normal OBP, 22.2% turned out to have either elevated BP or masked hypertension on ABPM. CONCLUSIONS: In this study a high prevalence of abnormal ABPM patterns in overweight or obese children and adolescents was detected. Additionally, OBP poorly correlated with the child's actual ABPM pattern. Herewith, we emphasized the usefulness of ABPM as an important diagnostic tool in this population.


Asunto(s)
Hipertensión , Hipertensión Enmascarada , Obesidad Infantil , Hipertensión de la Bata Blanca , Adolescente , Niño , Humanos , Presión Sanguínea/fisiología , Obesidad Infantil/diagnóstico , Obesidad Infantil/epidemiología , Obesidad Infantil/complicaciones , Hipertensión de la Bata Blanca/diagnóstico , Hipertensión de la Bata Blanca/epidemiología , Hipertensión de la Bata Blanca/complicaciones , Monitoreo Ambulatorio de la Presión Arterial , Hipertensión Enmascarada/complicaciones , Sobrepeso/complicaciones , Estudios Transversales , Hipertensión/diagnóstico , Hipertensión/epidemiología , Hipertensión/etiología
16.
Nat Rev Nephrol ; 19(3): 194-211, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36604599

RESUMEN

Primary hyperoxaluria (PH) is an inherited disorder that results from the overproduction of endogenous oxalate, leading to recurrent kidney stones, nephrocalcinosis and eventually kidney failure; the subsequent storage of oxalate can cause life-threatening systemic disease. Diagnosis of PH is often delayed or missed owing to its rarity, variable clinical expression and other diagnostic challenges. Management of patients with PH and kidney failure is also extremely challenging. However, in the past few years, several new developments, including new outcome data from patients with infantile oxalosis, from transplanted patients with type 1 PH (PH1) and from patients with the rarer PH types 2 and 3, have emerged. In addition, two promising therapies based on RNA interference have been introduced. These developments warrant an update of existing guidelines on PH, based on new evidence and on a broad consensus. In response to this need, a consensus development core group, comprising (paediatric) nephrologists, (paediatric) urologists, biochemists and geneticists from OxalEurope and the European Rare Kidney Disease Reference Network (ERKNet), formulated and graded statements relating to the management of PH on the basis of existing evidence. Consensus was reached following review of the recommendations by representatives of OxalEurope, ESPN, ERKNet and ERA, resulting in 48 practical statements relating to the diagnosis and management of PH, including consideration of conventional therapy (conservative therapy, dialysis and transplantation), new therapies and recommendations for patient follow-up.


Asunto(s)
Hiperoxaluria Primaria , Insuficiencia Renal , Humanos , Niño , Hiperoxaluria Primaria/diagnóstico , Hiperoxaluria Primaria/genética , Hiperoxaluria Primaria/terapia , Consenso , Diálisis Renal , Oxalatos , Enfermedades Raras
17.
Pediatr Nephrol ; 38(6): 1957-1969, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36322259

RESUMEN

BACKGROUND: Severe chronic kidney disease (CKD) in children and young adults has shown to be associated with abnormal brain development, which may contribute to neurocognitive impairments. We aimed to investigate risk factors for neurocognitive impairment and investigate the relation with structural brain abnormalities in young severe CKD patients. METHODS: This cross-sectional study includes 28 patients with severe CKD (eGFR < 30), aged 8-30 years (median 18.5 years), on different treatment modalities (pre-dialysis [n = 8], dialysis [n = 8], transplanted [n = 12]). We assessed neurocognitive functioning using a comprehensive test battery and brain structure by magnetic resonance imaging metrics of brain volume and white matter integrity (fractional anisotropy [FA] and mean diffusivity [MD] measured with diffusion tensor imaging). Multivariate regression and mediation analyses were performed between clinical CKD parameters, brain structure, and neurocognitive outcome. RESULTS: A combination of risk factors (e.g., longer time since kidney transplantation, longer dialysis duration and late CKD onset) was significantly associated with lower intelligence and/or worse processing speed and working memory. Lower FA in a cluster of white matter tracts was associated with lower intelligence and mediated the relation between clinical risk factors and lower intelligence. CONCLUSIONS: Young severe CKD patients with a prolonged duration of kidney replacement therapy, either dialysis or transplantation are at particular risk for impairments in intelligence, processing speed, and working memory. Disrupted white matter integrity may importantly contribute to these neurocognitive impairments. Prospective, longitudinal studies are needed to elucidate the mechanisms involved in CKD and treatment that affect white matter integrity and neurocognitive outcome in young patients. A higher resolution version of the Graphical abstract is available as Supplementary information.


Asunto(s)
Encefalopatías , Insuficiencia Renal Crónica , Humanos , Niño , Adulto Joven , Imagen de Difusión Tensora , Estudios Prospectivos , Estudios Transversales , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/terapia , Insuficiencia Renal Crónica/patología , Factores de Riesgo
19.
Pediatr Nephrol ; 38(3): 625-634, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35695965

RESUMEN

Accurate diagnosis of primary hyperoxaluria (PH) has important therapeutic consequences. Since biochemical assessment can be unreliable, genetic testing is a crucial diagnostic tool for patients with PH to define the disease type. Patients with PH type 1 (PH1) have a worse prognosis than those with other PH types, despite the same extent of oxalate excretion. The relation between genotype and clinical phenotype in PH1 is extremely heterogeneous with respect to age of first symptoms and development of kidney failure. Some mutations are significantly linked to pyridoxine-sensitivity in PH1, such as homozygosity for p.G170R and p.F152I combined with a common polymorphism. Although patients with these mutations display on average better outcomes, they may also present with CKD stage 5 in infancy. In vitro studies suggest pyridoxine-sensitivity for some other mutations, but confirmatory clinical data are lacking (p.G47R, p.G161R, p.I56N/major allele) or scarce (p.I244T). These studies also suggest that other vitamin B6 derivatives than pyridoxine may be more effective and should be a focus for clinical testing. PH patients displaying the same mutation, even within one family, may have completely different clinical outcomes. This discordance may be caused by environmental or genetic factors that are unrelated to the effect of the causative mutation(s). No relation between genotype and clinical or biochemical phenotypes have been found so far in PH types 2 and 3. This manuscript reviews the current knowledge on the genetic background of the three types of primary hyperoxaluria and its impact on clinical management, including prenatal diagnosis.


Asunto(s)
Hiperoxaluria Primaria , Humanos , Hiperoxaluria Primaria/diagnóstico , Hiperoxaluria Primaria/genética , Piridoxina/uso terapéutico , Mutación , Pruebas Genéticas/métodos , Genotipo , Transaminasas/genética
20.
Am J Kidney Dis ; 81(2): 145-155.e1, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35843439

RESUMEN

RATIONALE & OBJECTIVE: Lumasiran reduces urinary and plasma oxalate (POx) in patients with primary hyperoxaluria type 1 (PH1) and relatively preserved kidney function. ILLUMINATE-C evaluates the efficacy, safety, pharmacokinetics, and pharmacodynamics of lumasiran in patients with PH1 and advanced kidney disease. STUDY DESIGN: Phase 3, open-label, single-arm trial. SETTING & PARTICIPANTS: Multinational study; enrolled patients with PH1 of all ages, estimated glomerular filtration rate ≤45 mL/min/1.73 m2 (if age ≥12 months) or increased serum creatinine level (if age <12 months), and POx ≥20 µmol/L at screening, including patients with or without systemic oxalosis. INTERVENTION: Lumasiran administered subcutaneously; 3 monthly doses followed by monthly or quarterly weight-based dosing. OUTCOME: Primary end point: percent change in POx from baseline to month 6 (cohort A; not receiving hemodialysis at enrollment) and percent change in predialysis POx from baseline to month 6 (cohort B; receiving hemodialysis at enrollment). Pharmacodynamic secondary end points: percent change in POx area under the curve between dialysis sessions (cohort B only); absolute change in POx; percent and absolute change in spot urinary oxalate-creatinine ratio; and 24-hour urinary oxalate adjusted for body surface area. RESULTS: All patients (N = 21; 43% female; 76% White) completed the 6-month primary analysis period. Median age at consent was 8 (range, 0-59) years. For the primary end point, least-squares mean reductions in POx were 33.3% (95% CI, -15.2% to 81.8%) in cohort A (n = 6) and 42.4% (95% CI, 34.2%-50.7%) in cohort B (n = 15). Improvements were also observed in all pharmacodynamic secondary end points. Most adverse events were mild or moderate. No patient discontinued treatment or withdrew from the study. The most commonly reported lumasiran-related adverse events were injection-site reactions, all of which were mild and transient. LIMITATIONS: Single-arm study without placebo control. CONCLUSIONS: Lumasiran resulted in substantial reductions in POx with acceptable safety in patients with PH1 who have advanced kidney disease, supporting its efficacy and safety in this patient population. FUNDING: Alnylam Pharmaceuticals. TRIAL REGISTRATION: Registered at ClinicalTrials.gov with study number NCT04152200 and at EudraCT with study number 2019-001346-17. PLAIN-LANGUAGE SUMMARY: Primary hyperoxaluria type 1 (PH1) is a rare genetic disease characterized by excessive hepatic oxalate production that frequently causes kidney failure. Lumasiran is an RNA interference therapeutic that is administered subcutaneously for the treatment of PH1. Lumasiran has been shown to reduce oxalate levels in the urine and plasma of patients with PH1 who have relatively preserved kidney function. In the ILLUMINATE-C study, the efficacy and safety of lumasiran were evaluated in patients with PH1 and advanced kidney disease, including a cohort of patients undergoing hemodialysis. During the 6-month primary analysis period, lumasiran resulted in substantial reductions in plasma oxalate with acceptable safety in patients with PH1 complicated by advanced kidney disease.


Asunto(s)
Hiperoxaluria Primaria , Hiperoxaluria , Enfermedades Renales , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Adulto Joven , Hiperoxaluria Primaria/complicaciones , Enfermedades Renales/complicaciones , Oxalatos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...