Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant J ; 117(3): 909-923, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37953711

RESUMEN

DELAY OF GERMINATION 1 is a key regulator of dormancy in flowering plants before seed germination. Bryophytes develop haploid spores with an analogous function to seeds. Here, we investigate whether DOG1 function during germination is conserved between bryophytes and flowering plants and analyse the underlying mechanism of DOG1 action in the moss Physcomitrium patens. Phylogenetic and in silico expression analyses were performed to identify and characterise DOG1 domain-containing genes in P. patens. Germination assays were performed to characterise a Ppdog1-like1 mutant, and replacement with AtDOG1 was carried out. Yeast two-hybrid assays were used to test the interaction of the PpDOG1-like protein with DELLA proteins from P. patens and A. thaliana. P. patens possesses nine DOG1 domain-containing genes. The DOG1-like protein PpDOG1-L1 (Pp3c3_9650) interacts with PpDELLAa and PpDELLAb and the A. thaliana DELLA protein AtRGA in yeast. Protein truncations revealed the DOG1 domain as necessary and sufficient for interaction with PpDELLA proteins. Spores of Ppdog1-l1 mutant germinate faster than wild type, but replacement with AtDOG1 reverses this effect. Our data demonstrate a role for the PpDOG1-LIKE1 protein in moss spore germination, possibly alongside PpDELLAs. This suggests a conserved DOG1 domain function in germination, albeit with differential adaptation of regulatory networks in seed and spore germination.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Bryopsida , Germinación/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Latencia en las Plantas/genética , Filogenia , Esporas Fúngicas/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Semillas/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Plant Reprod ; 34(2): 149-173, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33839924

RESUMEN

KEY MESSAGE: Bryophytes as models to study the male germ line: loss-of-function mutants of epigenetic regulators HAG1 and SWI3a/b demonstrate conserved function in sexual reproduction. With the water-to-land transition, land plants evolved a peculiar haplodiplontic life cycle in which both the haploid gametophyte and the diploid sporophyte are multicellular. The switch between these phases was coined alternation of generations. Several key regulators that control the bauplan of either generation are already known. Analyses of such regulators in flowering plants are difficult due to the highly reduced gametophytic generation, and the fact that loss of function of such genes often is embryo lethal in homozygous plants. Here we set out to determine gene function and conservation via studies in bryophytes. Bryophytes are sister to vascular plants and hence allow evolutionary inferences. Moreover, embryo lethal mutants can be grown and vegetatively propagated due to the dominance of the bryophyte gametophytic generation. We determined candidates by selecting single copy orthologs that are involved in transcriptional control, and of which flowering plant mutants show defects during sexual reproduction, with a focus on the under-studied male germ line. We selected two orthologs, SWI3a/b and HAG1, and analyzed loss-of-function mutants in the moss P. patens. In both mutants, due to lack of fertile spermatozoids, fertilization and hence the switch to the diploid generation do not occur. Pphag1 additionally shows arrested male and impaired female gametangia development. We analyzed HAG1 in the dioecious liverwort M. polymorpha and found that in Mphag1 the development of gametangiophores is impaired. Taken together, we find that involvement of both regulators in sexual reproduction is conserved since the earliest divergence of land plants.


Asunto(s)
Embryophyta , Células Germinativas de las Plantas , Evolución Biológica , Epigénesis Genética , Reproducción/genética
3.
BMC Ecol Evol ; 21(1): 46, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33740894

RESUMEN

BACKGROUND: Nbp35-like proteins (Nbp35, Cfd1, HCF101, Ind1, and AbpC) are P-loop NTPases that serve as components of iron-sulfur cluster (FeS) assembly machineries. In eukaryotes, Ind1 is present in mitochondria, and its function is associated with the assembly of FeS clusters in subunits of respiratory Complex I, Nbp35 and Cfd1 are the components of the cytosolic FeS assembly (CIA) pathway, and HCF101 is involved in FeS assembly of photosystem I in plastids of plants (chHCF101). The AbpC protein operates in Bacteria and Archaea. To date, the cellular distribution of these proteins is considered to be highly conserved with only a few exceptions. RESULTS: We searched for the genes of all members of the Nbp35-like protein family and analyzed their targeting sequences. Nbp35 and Cfd1 were predicted to reside in the cytoplasm with some exceptions of Nbp35 localization to the mitochondria; Ind1was found in the mitochondria, and HCF101 was predicted to reside in plastids (chHCF101) of all photosynthetically active eukaryotes. Surprisingly, we found a second HCF101 paralog in all members of Cryptista, Haptista, and SAR that was predicted to predominantly target mitochondria (mHCF101), whereas Ind1 appeared to be absent in these organisms. We also identified a few exceptions, as apicomplexans possess mHCF101 predicted to localize in the cytosol and Nbp35 in the mitochondria. Our predictions were experimentally confirmed in selected representatives of Apicomplexa (Toxoplasma gondii), Stramenopila (Phaeodactylum tricornutum, Thalassiosira pseudonana), and Ciliophora (Tetrahymena thermophila) by tagging proteins with a transgenic reporter. Phylogenetic analysis suggested that chHCF101 and mHCF101 evolved from a common ancestral HCF101 independently of the Nbp35/Cfd1 and Ind1 proteins. Interestingly, phylogenetic analysis supports rather a lateral gene transfer of ancestral HCF101 from bacteria than its acquisition being associated with either α-proteobacterial or cyanobacterial endosymbionts. CONCLUSION: Our searches for Nbp35-like proteins across eukaryotic lineages revealed that SAR, Haptista, and Cryptista possess mitochondrial HCF101. Because plastid localization of HCF101 was only known thus far, the discovery of its mitochondrial paralog explains confusion regarding the presence of HCF101 in organisms that possibly lost secondary plastids (e.g., ciliates, Cryptosporidium) or possess reduced nonphotosynthetic plastids (apicomplexans).


Asunto(s)
Criptosporidiosis , Cryptosporidium , Proteínas Hierro-Azufre , Animales , Hierro , Proteínas Hierro-Azufre/genética , Filogenia , Azufre
4.
J Exp Bot ; 70(12): 3313-3328, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-30949700

RESUMEN

The timing of seed germination is crucial for seed plants and is coordinated by internal and external cues, reflecting adaptations to different habitats. Physiological and molecular studies with lettuce and Arabidopsis thaliana have documented a strict requirement for light to initiate germination and identified many receptors, signaling cascades, and hormonal control elements. In contrast, seed germination in several other plants is inhibited by light, but the molecular basis of this alternative response is unknown. We describe Aethionema arabicum (Brassicaceae) as a suitable model plant to investigate the mechanism of germination inhibition by light, as this species has accessions with natural variation between light-sensitive and light-neutral responses. Inhibition of germination occurs in red, blue, or far-red light and increases with light intensity and duration. Gibberellins and abscisic acid are involved in the control of germination, as in Arabidopsis, but transcriptome comparisons of light- and dark-exposed A. arabicum seeds revealed that, upon light exposure, the expression of genes for key regulators undergo converse changes, resulting in antipodal hormone regulation. These findings illustrate that similar modular components of a pathway in light-inhibited, light-neutral, and light-requiring germination among the Brassicaceae have been assembled in the course of evolution to produce divergent pathways, likely as adaptive traits.


Asunto(s)
Brassicaceae/fisiología , Expresión Génica/efectos de la radiación , Genes de Plantas , Germinación/efectos de la radiación , Luz Solar , Ácido Abscísico/metabolismo , Brassicaceae/efectos de la radiación , Giberelinas/metabolismo , Transcriptoma/efectos de los fármacos
5.
Front Plant Sci ; 9: 1621, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30459800

RESUMEN

Arbuscular mycorrhiza is one of the most common plant symbiotic interactions observed today. Due to their nearly ubiquitous occurrence and their beneficial impact on both partners it was suggested that this mutualistic interaction was crucial for plants to colonize the terrestrial habitat approximately 500 Ma ago. On the plant side the association is established via the common symbiotic pathway (CSP). This pathway allows the recognition of the fungal symbiotic partner, subsequent signaling to the nucleus, and initiation of the symbiotic program with respect to specific gene expression and cellular re-organization. The downstream part of the CSP is a regulatory network that coordinates the transcription of genes necessary to establish the symbiosis, comprising multiple GRAS transcription factors (TFs). These regulate their own expression as an intricate transcriptional network. Deduced from non-host genome data the loss of genes encoding CSP components coincides with the loss of the interaction itself. Here, we analyzed bryophyte species with special emphasis on the moss Physcomitrella patens, supposed to be a non-host, for the composition of the GRAS regulatory network components. We show lineage specific losses and expansions of several of these factors in bryophytes, potentially coinciding with the proposed host/non-host status of the lineages. We evaluate losses and expansions and infer clade-specific evolution of GRAS TFs.

6.
Genome Biol Evol ; 10(8): 2061-2071, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30085124

RESUMEN

Plastids surrounded by four membranes harbor a special compartment between the outer and inner plastid membrane pair, the so-called periplastidal compartment (PPC). This cellular structure is usually presumed to be the reduced cytoplasm of a eukaryotic phototrophic endosymbiont, which was integrated into a host cell and streamlined into a plastid with a complex membrane structure. Up to date, no mitochondrion or mitochondrion-related organelle has been identified in the PPC of any representative. However, two prominent groups, the cryptophytes and the chlorarachniophytes, still harbor a reduced cell nucleus of symbiont origin, the nucleomorph, in their PPCs. Generally, many cytoplasmic and nucleus-located eukaryotic proteins need an iron-sulfur cofactor for their functionality. Beside some exceptions, their synthesis is depending on a so-called iron-sulfur complex (ISC) assembly machinery located in the mitochondrion. This machinery provides the cytoplasm with a still unknown sulfur component, which is then converted into iron-sulfur clusters via a cytosolic iron-sulfur protein assembly (CIA) machinery. Here, we investigated if a CIA machinery is present in mitochondrion-lacking PPCs. By using bioinformatic screens and in vivo-localizations of candidate proteins, we show that the presence of a PPC-specific CIA machinery correlates with the presence of a nucleomorph. Phylogenetic analyses of PPC- and host specific CIA components additionally indicate a complex evolution of the CIA machineries in organisms having plastids surrounded by four membranes.


Asunto(s)
Criptófitas/metabolismo , Proteínas Hierro-Azufre/biosíntesis , Plastidios/metabolismo , Compartimento Celular , Criptófitas/genética , Citosol/metabolismo , Diatomeas/genética , Genoma , Modelos Biológicos , Filogenia
7.
Front Plant Sci ; 8: 1842, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29163577

RESUMEN

The moss Physcomitrella patens is used both as an evo-devo model and biotechnological production system for metabolites and pharmaceuticals. Strong in vivo expression of genes of interest is important for production of recombinant proteins, e.g., selectable markers, fluorescent proteins, or enzymes. In this regard, the choice of the promoter sequence as well as codon usage optimization are two important inside factors to consider in order to obtain optimum protein accumulation level. To reliably quantify fluorescence, we transfected protoplasts with promoter:GFP fusion constructs and measured fluorescence intensity of living protoplasts in a plate reader system. We used the red fluorescent protein mCherry under 2x 35S promoter control as second reporter to normalize for different transfection efficiencies. We derived a novel endogenous promoter and compared deletion variants with exogenous promoters. We used different codon-adapted green fluorescent protein (GFP) genes to evaluate the influence of promoter choice and codon optimization on protein accumulation in P. patens, and show that the promoter of the gene of P. patens chlorophyll a/b binding protein lhcsr1 drives expression of GFP in protoplasts significantly (more than twofold) better than the commonly used 2x 35S promoter or the rice actin1 promoter. We identified a shortened 677 bp version of the lhcsr1 promoter that retains full activity in protoplasts. The codon optimized GFP yields significantly (more than twofold) stronger fluorescence signals and thus demonstrates that adjusting codon usage in P. patens can increase expression strength. In combination, new promotor and codon optimized GFP conveyed sixfold increased fluorescence signal.

8.
Protoplasma ; 254(5): 1879-1885, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28258494

RESUMEN

Nuclear-encoded plant FtsZ genes are derived from endosymbiotic gene transfer of cyanobacteria-like genes. The green lineage (Chloroplastida) and red lineage (Rhodophyta) feature FtsZ1 and FtsZ2 or FtsZB and FtsZA, respectively, which are involved in plastid division. These two proteins show slight differences and seem to heteropolymerize to build the essential inner plastid division ring. A third gene, encoding FtsZ3, is present in glaucophyte and charophyte algae, as well as in land plants except ferns and angiosperms. This gene was probably present in the last common ancestor of the organisms united by having a primary plastid (Archaeplastida) and was lost during vascular plant evolution as well as in the red and green algae. The presence/absence pattern of FtsZ3 mirrors that of a full set of Mur genes and the peptidoglycan wall encoded by them. Based on these findings, we discuss a role for FtsZ3 in the establishment or maintenance of plastid peptidoglycan shells.


Asunto(s)
Embryophyta/metabolismo , Plastidios/metabolismo , Carofíceas/metabolismo , Evolución Molecular , Helechos/metabolismo , Magnoliopsida/metabolismo , Peptidoglicano/metabolismo , Proteínas de Plantas/metabolismo
9.
Plant Physiol ; 172(3): 1691-1707, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27702842

RESUMEN

Understanding how plants cope with changing habitats is a timely and important topic in plant research. Phenotypic plasticity describes the capability of a genotype to produce different phenotypes when exposed to different environmental conditions. In contrast, the constant production of a set of distinct phenotypes by one genotype mediates bet hedging, a strategy that reduces the temporal variance in fitness at the expense of a lowered arithmetic mean fitness. Both phenomena are thought to represent important adaptation strategies to unstable environments. However, little is known about the underlying mechanisms of these phenomena, partly due to the lack of suitable model systems. We used phylogenetic and comparative analyses of fruit and seed anatomy, biomechanics, physiology, and environmental responses to study fruit and seed heteromorphism, a typical morphological basis of a bet-hedging strategy of plants, in the annual Brassicaceae species Aethionema arabicum Our results indicate that heteromorphism evolved twice within the Aethionemeae, including once for the monophyletic annual Aethionema clade. The dimorphism of Ae. arabicum is associated with several anatomic, biomechanical, gene expression, and physiological differences between the fruit and seed morphs. However, fruit ratios and numbers change in response to different environmental conditions. Therefore, the life-history strategy of Ae. arabicum appears to be a blend of bet hedging and plasticity. Together with the available genomic resources, our results pave the way to use this species in future studies intended to unravel the molecular control of heteromorphism and plasticity.


Asunto(s)
Brassicaceae/embriología , Frutas/embriología , Semillas/embriología , Brassicaceae/anatomía & histología , Brassicaceae/genética , Brassicaceae/ultraestructura , Regulación hacia Abajo/genética , Frutas/genética , Frutas/ultraestructura , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes del Desarrollo , Genes de Plantas , Germinación/genética , Modelos Biológicos , Fenotipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Dispersión de Semillas , Semillas/genética , Semillas/ultraestructura , Homología de Secuencia de Aminoácido
10.
Protist ; 166(1): 161-71, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25687114

RESUMEN

The tiny eustigmatophyte Nannochloropsis sp. recently emerged as a promising model organism for biotechnology as it possesses a considerably high cellular oil content interesting for biodiesel production. Furthermore, the alga was shown to be genetically well accessible providing powerful tools for biotechnological engineering as well as basic research. Nannochloropsis sp. can be transformed very efficiently taking advantage of homologous recombination, however, so far it remained unclear whether these organisms are also suitable model systems for in vivo protein localization studies due to their small cell size. Here we present, to our knowledge, the first protein localization studies based on the expression of chimeric fluorescent fusion proteins in the genus Nannochloropsis using N. oceanica CCMP1779 as a model organism. Besides expressing a cytosolic green fluorescent protein (GFP), the reporter could be directed into subcellular structures such as the mitochondria, the endoplasmic reticulum and secretory pathway as well as the complex plastid including the periplastidal compartment and the stroma via fusion of specific N-terminal targeting sequences. These results expand the potential of N. oceanica as a model system in biotechnology as well as cellular biology for which now an almost complete molecular tool set exists.


Asunto(s)
Proteínas Algáceas/genética , Proteínas Algáceas/metabolismo , Genética Microbiana/métodos , Ingeniería Metabólica/métodos , Estramenopilos/genética , Estramenopilos/metabolismo , Genes Reporteros , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Transporte de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
11.
Curr Opin Microbiol ; 22: 88-93, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25460801

RESUMEN

Many important algae groups like diatoms, dinoflagellates and 'kelp' but also apicomplexan parasites evolved in secondary endosymbiosis. Here, a eukaryote-eukaryote endosymbiosis created chimeric cells, in which a eukaryotic symbiont was reduced to a complex plastid. Although having lost nearly all of the eukaryotic compartments of the symbiont, a tiny lumen representing the remnant of the cytoplasm of the symbiont is still present in most of these organisms. This compartment, the periplastidal compartment, shows different degrees of reductions as in two algal groups the former nucleus is still present in a minimized form, called nucleomorph, whereas most others have lost the genetic system completely. Thus, the natural reduction of eukaryotic cytoplasms can be studied in terms of evolution and functionality, giving additionally advices for the design of synthetic minimized compartments.


Asunto(s)
Citoplasma/metabolismo , Eucariontes/metabolismo , Plastidios/metabolismo , Transporte Biológico , Eucariontes/genética , Genoma/genética , Simbiosis/fisiología
12.
Genome Biol Evol ; 4(12): 1349-57, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23221608

RESUMEN

RNA editing is a post-transcriptional process that can act upon transcripts from mitochondrial, nuclear, and chloroplast genomes. In chloroplasts, single-nucleotide conversions in mRNAs via RNA editing occur at different frequencies across the plant kingdom. These range from several hundred edited sites in some mosses and ferns to lower frequencies in seed plants and the complete lack of RNA editing in the liverwort Marchantia polymorpha. Here, we report the sequence and edited sites of the chloroplast genome from the liverwort Pellia endiviifolia. The type and frequency of chloroplast RNA editing display a pattern highly similar to that in seed plants. Analyses of the C to U conversions and the genomic context in which the editing sites are embedded provide evidence in favor of the hypothesis that chloroplast RNA editing evolved to compensate mutations in the first land plants.


Asunto(s)
Genes del Cloroplasto , Genoma del Cloroplasto , Hepatophyta/genética , Edición de ARN , Secuencia de Bases , Citosina/metabolismo , ARN Mensajero/metabolismo , ARN de Planta/metabolismo , Timina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...