Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(4): e0301999, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38635686

RESUMEN

To study how the nervous system processes visual information, experimenters must record neural activity while delivering visual stimuli in a controlled fashion. In animals with a nearly panoramic field of view, such as flies, precise stimulation of the entire visual field is challenging. We describe a projector-based device for stimulation of the insect visual system under a microscope. The device is based on a bowl-shaped screen that provides a wide and nearly distortion-free field of view. It is compact, cheap, easy to assemble, and easy to operate using the included open-source software for stimulus generation. We validate the virtual reality system technically and demonstrate its capabilities in a series of experiments at two levels: the cellular, by measuring the membrane potential responses of visual interneurons; and the organismal, by recording optomotor and fixation behavior of Drosophila melanogaster in tethered flight. Our experiments reveal the importance of stimulating the visual system of an insect with a wide field of view, and we provide a simple solution to do so.


Asunto(s)
Drosophila melanogaster , Campos Visuales , Animales , Drosophila melanogaster/fisiología , Estimulación Luminosa , Programas Informáticos , Interneuronas , Vuelo Animal/fisiología , Percepción Visual/fisiología
2.
Annu Rev Neurosci ; 46: 17-37, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37428604

RESUMEN

How neurons detect the direction of motion is a prime example of neural computation: Motion vision is found in the visual systems of virtually all sighted animals, it is important for survival, and it requires interesting computations with well-defined linear and nonlinear processing steps-yet the whole process is of moderate complexity. The genetic methods available in the fruit fly Drosophila and the charting of a connectome of its visual system have led to rapid progress and unprecedented detail in our understanding of how neurons compute the direction of motion in this organism. The picture that emerged incorporates not only the identity, morphology, and synaptic connectivity of each neuron involved but also its neurotransmitters, its receptors, and their subcellular localization. Together with the neurons' membrane potential responses to visual stimulation, this information provides the basis for a biophysically realistic model of the circuit that computes the direction of visual motion.


Asunto(s)
Percepción de Movimiento , Animales , Percepción de Movimiento/fisiología , Vías Visuales/fisiología , Drosophila/fisiología , Visión Ocular , Neuronas/fisiología , Estimulación Luminosa
3.
Nature ; 603(7899): 119-123, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35197635

RESUMEN

Nonlinear, multiplication-like operations carried out by individual nerve cells greatly enhance the computational power of a neural system1-3, but our understanding of their biophysical implementation is scant. Here we pursue this problem in the Drosophila melanogaster ON motion vision circuit4,5, in which we record the membrane potentials of direction-selective T4 neurons and of their columnar input elements6,7 in response to visual and pharmacological stimuli in vivo. Our electrophysiological measurements and conductance-based simulations provide evidence for a passive supralinear interaction between two distinct types of synapse on T4 dendrites. We show that this multiplication-like nonlinearity arises from the coincidence of cholinergic excitation and release from glutamatergic inhibition. The latter depends on the expression of the glutamate-gated chloride channel GluClα8,9 in T4 neurons, which sharpens the directional tuning of the cells and shapes the optomotor behaviour of the animals. Interacting pairs of shunting inhibitory and excitatory synapses have long been postulated as an analogue approximation of a multiplication, which is integral to theories of motion detection10,11, sound localization12 and sensorimotor control13.


Asunto(s)
Drosophila melanogaster , Modelos Neurológicos , Animales , Biofisica , Neuronas/fisiología , Sinapsis/fisiología
4.
Curr Biol ; 31(22): 4911-4922.e4, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34610272

RESUMEN

The mushroom bodies of Drosophila contain circuitry compatible with race models of perceptual choice. When flies discriminate odor intensity differences, opponent pools of αß core Kenyon cells (on and off αßc KCs) accumulate evidence for increases or decreases in odor concentration. These sensory neurons and "antineurons" connect to a layer of mushroom body output neurons (MBONs) which bias behavioral intent in opposite ways. All-to-all connectivity between the competing integrators and their MBON partners allows for correct and erroneous decisions; dopaminergic reinforcement sets choice probabilities via reciprocal changes to the efficacies of on and off KC synapses; and pooled inhibition between αßc KCs can establish equivalence with the drift-diffusion formalism known to describe behavioral performance. The response competition network gives tangible form to many features envisioned in theoretical models of mammalian decision making, but it differs from these models in one respect: the principal variables-the fill levels of the integrators and the strength of inhibition between them-are represented by graded potentials rather than spikes. In pursuit of similar computational goals, a small brain may thus prioritize the large information capacity of analog signals over the robustness and temporal processing span of pulsatile codes.


Asunto(s)
Cuerpos Pedunculados , Neuronas , Animales , Drosophila/fisiología , Drosophila melanogaster/fisiología , Mamíferos , Cuerpos Pedunculados/fisiología , Neuronas/fisiología , Odorantes , Olfato/fisiología , Sinapsis/fisiología
5.
Methods Mol Biol ; 2276: 173-191, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34060041

RESUMEN

Mitochondrial Ca2+ uptake regulates mitochondrial function and contributes to cell signaling. Accordingly, quantifying mitochondrial Ca2+ signals and elaborating the mechanisms that accomplish mitochondrial Ca2+ uptake are essential to gain our understanding of cell biology. Here, we describe the benefits and drawbacks of various established old and new techniques to assess dynamic changes of mitochondrial Ca2+ concentration ([Ca2+]mito) in a wide range of applications.


Asunto(s)
Calcio/metabolismo , Microscopía Fluorescente/métodos , Mitocondrias/metabolismo , Técnicas de Placa-Clamp/métodos , Animales , Células Cultivadas , Colorantes Fluorescentes/química , Humanos , Consumo de Oxígeno/fisiología
6.
Annu Rev Biophys ; 48: 209-229, 2019 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-30786228

RESUMEN

All an animal can do to infer the state of its environment is to observe the sensory-evoked activity of its own neurons. These inferences about the presence, quality, or similarity of objects are probabilistic and inform behavioral decisions that are often made in close to real time. Neural systems employ several strategies to facilitate sensory discrimination: Biophysical mechanisms separate the neuronal response distributions in coding space, compress their variances, and combine information from sequential observations. We review how these strategies are implemented in the olfactory system of the fruit fly. The emerging principles of odor discrimination likely apply to other neural circuits of similar architecture.


Asunto(s)
Percepción Olfatoria , Olfato , Animales , Drosophila , Humanos , Neuronas , Solución de Problemas
7.
Cell ; 173(4): 894-905.e13, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29706545

RESUMEN

Perceptual decisions require the accumulation of sensory information to a response criterion. Most accounts of how the brain performs this process of temporal integration have focused on evolving patterns of spiking activity. We report that subthreshold changes in membrane voltage can represent accumulating evidence before a choice. αß core Kenyon cells (αßc KCs) in the mushroom bodies of fruit flies integrate odor-evoked synaptic inputs to action potential threshold at timescales matching the speed of olfactory discrimination. The forkhead box P transcription factor (FoxP) sets neuronal integration and behavioral decision times by controlling the abundance of the voltage-gated potassium channel Shal (KV4) in αßc KC dendrites. αßc KCs thus tailor, through a particular constellation of biophysical properties, the generic process of synaptic integration to the demands of sequential sampling.


Asunto(s)
Dendritas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Bario/farmacología , Conducta Animal/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Ciclohexanoles/farmacología , Proteínas de Drosophila/genética , Femenino , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Masculino , Neuronas/citología , Neuronas/metabolismo , Técnicas de Placa-Clamp , Receptores Odorantes/metabolismo , Canales de Potasio Shal/genética , Canales de Potasio Shal/metabolismo , Olfato , Sinapsis/metabolismo
8.
Elife ; 62017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28267430

RESUMEN

Ion channel models are the building blocks of computational neuron models. Their biological fidelity is therefore crucial for the interpretation of simulations. However, the number of published models, and the lack of standardization, make the comparison of ion channel models with one another and with experimental data difficult. Here, we present a framework for the automated large-scale classification of ion channel models. Using annotated metadata and responses to a set of voltage-clamp protocols, we assigned 2378 models of voltage- and calcium-gated ion channels coded in NEURON to 211 clusters. The IonChannelGenealogy (ICGenealogy) web interface provides an interactive resource for the categorization of new and existing models and experimental recordings. It enables quantitative comparisons of simulated and/or measured ion channel kinetics, and facilitates field-wide standardization of experimentally-constrained modeling.


Asunto(s)
Biología Computacional/métodos , Canales Iónicos/clasificación , Canales Iónicos/metabolismo , Neuronas/química , Neuronas/fisiología , Bases de Datos Factuales , Modelos Neurológicos
9.
Diabetologia ; 59(8): 1743-52, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27153842

RESUMEN

AIMS/HYPOTHESIS: Lysosomal acid lipase (LAL) hydrolyses cholesteryl esters and triacylglycerols (TG) within lysosomes to mobilise NEFA and cholesterol. Since LAL-deficient (Lal (-/-) ) mice suffer from progressive loss of adipose tissue and severe accumulation of lipids in hepatic lysosomes, we hypothesised that LAL deficiency triggers alternative energy pathway(s). METHODS: We studied metabolic adaptations in Lal (-/-) mice. RESULTS: Despite loss of adipose tissue, Lal (-/-) mice show enhanced glucose clearance during insulin and glucose tolerance tests and have increased uptake of [(3)H]2-deoxy-D-glucose into skeletal muscle compared with wild-type mice. In agreement, fasted Lal (-/-) mice exhibit reduced glucose and glycogen levels in skeletal muscle. We observed 84% decreased plasma leptin levels and significantly reduced hepatic ATP, glucose, glycogen and glutamine concentrations in fed Lal (-/-) mice. Markedly reduced hepatic acyl-CoA concentrations decrease the expression of peroxisome proliferator-activated receptor α (PPARα) target genes. However, treatment of Lal (-/-) mice with the PPARα agonist fenofibrate further decreased plasma TG (and hepatic glucose and glycogen) concentrations in Lal (-/-) mice. Depletion of hepatic nuclear factor 4α and forkhead box protein a2 in fasted Lal (-/-) mice might be responsible for reduced expression of microsomal TG transfer protein, defective VLDL synthesis and drastically reduced plasma TG levels. CONCLUSIONS/INTERPRETATION: Our findings indicate that neither activation nor inactivation of PPARα per se but rather the availability of hepatic acyl-CoA concentrations regulates VLDL synthesis and subsequent metabolic adaptations in Lal (-/-) mice. We conclude that decreased plasma VLDL production enhances glucose uptake into skeletal muscle to compensate for the lack of energy supply.


Asunto(s)
VLDL-Colesterol/metabolismo , Resistencia a la Insulina/fisiología , Esterol Esterasa/metabolismo , Animales , VLDL-Colesterol/genética , Femenino , Glucosa/metabolismo , Resistencia a la Insulina/genética , Lipólisis/genética , Lipólisis/fisiología , Hígado/metabolismo , Lisosomas/metabolismo , Masculino , Ratones , Esterol Esterasa/deficiencia , Esterol Esterasa/genética , Triglicéridos/metabolismo
10.
Methods Mol Biol ; 1264: 421-39, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25631032

RESUMEN

Mitochondrial Ca(2+) uptake regulates mitochondrial function and contributes to cell signaling. Accordingly, quantifying mitochondrial Ca(2+) signals and elaborating the mechanisms that accomplish mitochondrial Ca(2+) uptake are essential to gain our understanding of cell biology. Here, we describe the benefits and drawbacks of various established old and new techniques to assess dynamic changes of mitochondrial Ca(2+) concentration ([Ca(2+)]mito) in a wide range of applications.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Mitocondrias/metabolismo , Animales , Línea Celular , Transferencia Resonante de Energía de Fluorescencia , Humanos , Potencial de la Membrana Mitocondrial , Consumo de Oxígeno , Técnicas de Placa-Clamp
11.
J Physiol ; 592(21): 4677-96, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25172946

RESUMEN

Mouse pancreatic ß- and α-cells are equipped with voltage-gated Na(+) currents that inactivate over widely different membrane potentials (half-maximal inactivation (V0.5) at -100 mV and -50 mV in ß- and α-cells, respectively). Single-cell PCR analyses show that both α- and ß-cells have Nav1.3 (Scn3) and Nav1.7 (Scn9a) α subunits, but their relative proportions differ: ß-cells principally express Nav1.7 and α-cells Nav1.3. In α-cells, genetically ablating Scn3a reduces the Na(+) current by 80%. In ß-cells, knockout of Scn9a lowers the Na(+) current by >85%, unveiling a small Scn3a-dependent component. Glucagon and insulin secretion are inhibited in Scn3a(-/-) islets but unaffected in Scn9a-deficient islets. Thus, Nav1.3 is the functionally important Na(+) channel α subunit in both α- and ß-cells because Nav1.7 is largely inactive at physiological membrane potentials due to its unusually negative voltage dependence of inactivation. Interestingly, the Nav1.7 sequence in brain and islets is identical and yet the V0.5 for inactivation is >30 mV more negative in ß-cells. This may indicate the presence of an intracellular factor that modulates the voltage dependence of inactivation.


Asunto(s)
Células Secretoras de Glucagón/metabolismo , Células Secretoras de Insulina/metabolismo , Canal de Sodio Activado por Voltaje NAV1.3/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Sodio/fisiología , Animales , Regulación de la Expresión Génica , Células Secretoras de Glucagón/efectos de los fármacos , Glucosa , Células HEK293 , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Canal de Sodio Activado por Voltaje NAV1.3/genética , Canal de Sodio Activado por Voltaje NAV1.7/genética , Neurotoxinas/farmacología , Isoformas de Proteínas , Subunidades de Proteína
12.
J Cell Sci ; 127(Pt 13): 2944-55, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24806964

RESUMEN

Mitochondria contribute to cell signaling by controlling store-operated Ca(2+) entry (SOCE). SOCE is activated by Ca(2+) release from the endoplasmic reticulum (ER), whereupon stromal interacting molecule 1 (STIM1) forms oligomers, redistributes to ER-plasma-membrane junctions and opens plasma membrane Ca(2+) channels. The mechanisms by which mitochondria interfere with the complex process of SOCE are insufficiently clarified. In this study, we used an shRNA approach to investigate the direct involvement of mitochondrial Ca(2+) buffering in SOCE. We demonstrate that knockdown of either of two proteins that are essential for mitochondrial Ca(2+) uptake, the mitochondrial calcium uniporter (MCU) or uncoupling protein 2 (UCP2), results in decelerated STIM1 oligomerization and impaired SOCE following cell stimulation with an inositol-1,4,5-trisphosphate (IP3)-generating agonist. Upon artificially augmented cytosolic Ca(2+) buffering or ER Ca(2+) depletion by sarcoplasmic or endoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibitors, STIM1 oligomerization did not rely on intact mitochondrial Ca(2+) uptake. However, MCU-dependent mitochondrial sequestration of Ca(2+) entering through the SOCE pathway was essential to prevent slow deactivation of SOCE. Our findings show a stimulus-specific contribution of mitochondrial Ca(2+) uptake to the SOCE machinery, likely through a role in shaping cytosolic Ca(2+) micro-domains.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio , Calcio/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas de Neoplasias/metabolismo , Canales de Calcio/genética , Células HeLa , Humanos , Inositol 1,4,5-Trifosfato/genética , Proteínas de la Membrana/genética , Proteínas de Neoplasias/genética , Molécula de Interacción Estromal 1
13.
Vitam Horm ; 95: 63-86, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24559914

RESUMEN

Pancreatic ß-cells are the only cells capable of lowering blood glucose by secreting insulin. The ß-cell continuously adjusts its secretory activity to substrate availability in order to keep blood glucose levels within the physiological range--a process called metabolism-secretion coupling. Glucose is readily taken up by the ß-cell and broken down into intermediates that fuel oxidative metabolism inside the mitochondria to generate ATP. The resulting increase in the ATP/ADP ratio causes closure of plasma membrane KATP channels, thereby depolarizing the cell and triggering the opening of voltage-gated Ca²âº channels. Consequential oscillations of cytosolic Ca²âº not only mediate the exocytosis of insulin granules but are also relayed to other subcellular compartments including the mitochondria, where Ca²âº is required to accelerate mitochondrial metabolism in response to nutrient stimulation. The mitochondrial Ca²âº uptake machinery plays a fundamental role in this feed-forward mechanism that guarantees sustained insulin secretion and, thus, represents a promising therapeutic target for type 2 diabetes.


Asunto(s)
Señalización del Calcio , Metabolismo Energético , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Mitocondrias/metabolismo , Modelos Biológicos , Regulación hacia Arriba , Animales , Células Clonales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/fisiopatología , Humanos , Secreción de Insulina , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/patología , Páncreas/citología , Páncreas/patología , Páncreas/fisiología , Páncreas/fisiopatología
14.
Mol Biol Cell ; 25(3): 368-79, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24307679

RESUMEN

Multiple functions of the endoplasmic reticulum (ER) essentially depend on ATP within this organelle. However, little is known about ER ATP dynamics and the regulation of ER ATP import. Here we describe real-time recordings of ER ATP fluxes in single cells using an ER-targeted, genetically encoded ATP sensor. In vitro experiments prove that the ATP sensor is both Ca(2+) and redox insensitive, which makes it possible to monitor Ca(2+)-coupled ER ATP dynamics specifically. The approach uncovers a cell type-specific regulation of ER ATP homeostasis in different cell types. Moreover, we show that intracellular Ca(2+) release is coupled to an increase of ATP within the ER. The Ca(2+)-coupled ER ATP increase is independent of the mode of Ca(2+) mobilization and controlled by the rate of ATP biosynthesis. Furthermore, the energy stress sensor, AMP-activated protein kinase, is essential for the ATP increase that occurs in response to Ca(2+) depletion of the organelle. Our data highlight a novel Ca(2+)-controlled process that supplies the ER with additional energy upon cell stimulation.


Asunto(s)
Adenosina Trifosfato/metabolismo , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Trifosfato/biosíntesis , Animales , Transporte Biológico , Línea Celular Tumoral , Glucosa/metabolismo , Glucólisis/fisiología , Células HEK293 , Células HeLa , Células Endoteliales de la Vena Umbilical Humana , Humanos , Oxidación-Reducción , Interferencia de ARN , ARN Interferente Pequeño , Ratas
15.
Cell Metab ; 18(6): 871-82, 2013 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-24315372

RESUMEN

Glucagon, secreted by pancreatic islet α cells, is the principal hyperglycemic hormone. In diabetes, glucagon secretion is not suppressed at high glucose, exacerbating the consequences of insufficient insulin secretion, and is inadequate at low glucose, potentially leading to fatal hypoglycemia. The causal mechanisms remain unknown. Here we show that α cell KATP-channel activity is very low under hypoglycemic conditions and that hyperglycemia, via elevated intracellular ATP/ADP, leads to complete inhibition. This produces membrane depolarization and voltage-dependent inactivation of the Na(+) channels involved in action potential firing that, via reduced action potential height and Ca(2+) entry, suppresses glucagon secretion. Maneuvers that increase KATP channel activity, such as metabolic inhibition, mimic the glucagon secretory defects associated with diabetes. Low concentrations of the KATP channel blocker tolbutamide partially restore glucose-regulated glucagon secretion in islets from type 2 diabetic organ donors. These data suggest that impaired metabolic control of the KATP channels underlies the defective glucose regulation of glucagon secretion in type 2 diabetes.


Asunto(s)
Glucagón/metabolismo , Glucosa/metabolismo , Canales KATP/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Exocitosis , Células Secretoras de Glucagón/efectos de los fármacos , Células Secretoras de Glucagón/fisiología , Glucosa/farmacología , Humanos , Técnicas In Vitro , Canales KATP/antagonistas & inhibidores , Potenciales de la Membrana/fisiología , Ratones , Mutación , Técnicas de Placa-Clamp , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Donantes de Tejidos , Tolbutamida/farmacología
16.
J Biol Chem ; 288(50): 36040-51, 2013 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-24155240

RESUMEN

NAT8L (N-acetyltransferase 8-like) catalyzes the formation of N-acetylaspartate (NAA) from acetyl-CoA and aspartate. In the brain, NAA delivers the acetate moiety for synthesis of acetyl-CoA that is further used for fatty acid generation. However, its function in other tissues remained elusive. Here, we show for the first time that Nat8l is highly expressed in adipose tissues and murine and human adipogenic cell lines and is localized in the mitochondria of brown adipocytes. Stable overexpression of Nat8l in immortalized brown adipogenic cells strongly increases glucose incorporation into neutral lipids, accompanied by increased lipolysis, indicating an accelerated lipid turnover. Additionally, mitochondrial mass and number as well as oxygen consumption are elevated upon Nat8l overexpression. Concordantly, expression levels of brown marker genes, such as Prdm16, Cidea, Pgc1α, Pparα, and particularly UCP1, are markedly elevated in these cells. Treatment with a PPARα antagonist indicates that the increase in UCP1 expression and oxygen consumption is PPARα-dependent. Nat8l knockdown in brown adipocytes has no impact on cellular triglyceride content, lipogenesis, or oxygen consumption, but lipolysis and brown marker gene expression are increased; the latter is also observed in BAT of Nat8l-KO mice. Interestingly, the expression of ATP-citrate lyase is increased in Nat8l-silenced adipocytes and BAT of Nat8l-KO mice, indicating a compensatory mechanism to sustain the acetyl-CoA pool once Nat8l levels are reduced. Taken together, our data show that Nat8l impacts on the brown adipogenic phenotype and suggests the existence of the NAT8L-driven NAA metabolism as a novel pathway to provide cytosolic acetyl-CoA for lipid synthesis in adipocytes.


Asunto(s)
Acetiltransferasas/metabolismo , Adipocitos Marrones/metabolismo , Metabolismo Energético , Metabolismo de los Lípidos , Acetilcoenzima A/metabolismo , Acetiltransferasas/deficiencia , Acetiltransferasas/genética , Adipocitos Marrones/citología , Adipocitos Marrones/enzimología , Adipogénesis , Animales , Proteínas de Ciclo Celular/metabolismo , Regulación Enzimológica de la Expresión Génica , Técnicas de Inactivación de Genes , Silenciador del Gen , Humanos , Canales Iónicos/metabolismo , Cinética , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Tamaño Mitocondrial , PPAR alfa/metabolismo , Fenotipo , Fosfoproteínas/metabolismo , Proteínas Quinasas/genética , Transporte de Proteínas , Proteína Desacopladora 1 , Regulación hacia Arriba
17.
J Biol Chem ; 288(21): 15367-79, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23592775

RESUMEN

The transfer of Ca(2+) across the inner mitochondrial membrane is an important physiological process linked to the regulation of metabolism, signal transduction, and cell death. While the definite molecular composition of mitochondrial Ca(2+) uptake sites remains unknown, several proteins of the inner mitochondrial membrane, that are likely to accomplish mitochondrial Ca(2+) fluxes, have been described: the novel uncoupling proteins 2 and 3, the leucine zipper-EF-hand containing transmembrane protein 1 and the mitochondrial calcium uniporter. It is unclear whether these proteins contribute to one unique mitochondrial Ca(2+) uptake pathway or establish distinct routes for mitochondrial Ca(2+) sequestration. In this study, we show that a modulation of Ca(2+) release from the endoplasmic reticulum by inhibition of the sarco/endoplasmatic reticulum ATPase modifies cytosolic Ca(2+) signals and consequently switches mitochondrial Ca(2+) uptake from an uncoupling protein 3- and mitochondrial calcium uniporter-dependent, but leucine zipper-EF-hand containing transmembrane protein 1-independent to a leucine zipper-EF-hand containing transmembrane protein 1- and mitochondrial calcium uniporter-mediated, but uncoupling protein 3-independent pathway. Thus, the activity of sarco/endoplasmatic reticulum ATPase is significant for the mode of mitochondrial Ca(2+) sequestration and determines which mitochondrial proteins might actually accomplish the transfer of Ca(2+) across the inner mitochondrial membrane. Moreover, our findings herein support the existence of distinct mitochondrial Ca(2+) uptake routes that might be essential to ensure an efficient ion transfer into mitochondria despite heterogeneous cytosolic Ca(2+) rises.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Canales Iónicos/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Retículo Endoplásmico/genética , Células HeLa , Humanos , Canales Iónicos/genética , Mitocondrias/genética , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Proteína Desacopladora 1
18.
Antioxid Redox Signal ; 19(4): 331-43, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23320803

RESUMEN

AIMS: Defects in the activity of enzyme complexes of the mitochondrial respiratory chain are thought to be responsible for several disorders, including renal impairment. Gene mutations that result in complex I deficiency are the most common oxidative phosphorylation disorders in humans. To determine whether an abnormality in mitochondrial complex I per se is associated with development of renal disease, mice with a knockdown of the complex I gene, Ndufs6 were studied. RESULTS: Ndufs6 mice had a partial renal cortical complex I deficiency; Ndufs6gt/gt, 32% activity and Ndufs6gt/+, 83% activity compared with wild-type mice. Both Ndufs6gt/+ and Ndufs6gt/gt mice exhibited hallmarks of renal disease, including albuminuria, urinary excretion of kidney injury molecule-1 (Kim-1), renal fibrosis, and changes in glomerular volume, with decreased capacity to generate mitochondrial ATP and superoxide from substrates oxidized via complex I. However, more advanced renal defects in Ndufs6gt/gt mice were observed in the context of a disruption in the inner mitochondrial electrochemical potential, 3-nitrotyrosine-modified mitochondrial proteins, increased urinary excretion of 15-isoprostane F2t, and up-regulation of antioxidant defence. Juvenile Ndufs6gt/gt mice also exhibited signs of early renal impairment with increased urinary Kim-1 excretion and elevated circulating cystatin C. INNOVATION: We have identified renal impairment in a mouse model of partial complex I deficiency, suggesting that even modest deficits in mitochondrial respiratory chain function may act as risk factors for chronic kidney disease. CONCLUSION: These studies identify for the first time that complex I deficiency as the result of interruption of Ndufs6 is an independent cause of renal impairment.


Asunto(s)
Complejo I de Transporte de Electrón/deficiencia , Complejo I de Transporte de Electrón/metabolismo , Enfermedades Renales/metabolismo , Enfermedades Mitocondriales/metabolismo , NADH Deshidrogenasa/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Antioxidantes/metabolismo , Complejo I de Transporte de Electrón/genética , Enfermedades Renales/genética , Ratones , Ratones Noqueados , Enfermedades Mitocondriales/genética , NADH Deshidrogenasa/genética , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
19.
J Cell Sci ; 126(Pt 4): 879-88, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23239024

RESUMEN

The endocannabiniod anandamide (AEA) and its derivate N-arachidonoyl glycine (NAGly) have a broad spectrum of physiological effects, which are induced by both binding to receptors and receptor-independent modulations of ion channels and transporters. The impact of AEA and NAGly on store-operated Ca(2+) entry (SOCE), a ubiquitous Ca(2+) entry pathway regulating many cellular functions, is unknown. Here we show that NAGly, but not AEA reversibly hinders SOCE in a time- and concentration-dependent manner. The inhibitory effect of NAGly on SOCE was found in the human endothelial cell line EA.hy926, the rat pancreatic ß-cell line INS-1 832/13, and the rat basophilic leukemia cell line RBL-2H3. NAGly diminished SOCE independently from the mode of Ca(2+) depletion of the endoplasmic reticulum, whereas it had no effect on Ca(2+) entry through L-type voltage-gated Ca(2+) channels. Enhanced Ca(2+) entry was effectively hampered by NAGly in cells overexpressing the key molecular constituents of SOCE, stromal interacting molecule 1 (STIM1) and the pore-forming subunit of SOCE channels, Orai1. Fluorescence microscopy revealed that NAGly did not affect STIM1 oligomerization, STIM1 clustering, or the colocalization of STIM1 with Orai1, which were induced by Ca(2+) depletion of the endoplasmic reticulum. In contrast, independently from its slow depolarizing effect on mitochondria, NAGly instantly and strongly diminished the interaction of STIM1 with Orai1, indicating that NAGly inhibits SOCE primarily by uncoupling STIM1 from Orai1. In summary, our findings revealed the STIM1-Orai1-mediated SOCE machinery as a molecular target of NAGly, which might have many implications in cell physiology.


Asunto(s)
Ácidos Araquidónicos/farmacología , Canales de Calcio/metabolismo , Calcio/metabolismo , Endocannabinoides/farmacología , Glicina/análogos & derivados , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Glicina/farmacología , Humanos , Concentración de Iones de Hidrógeno , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Microscopía Fluorescente , Proteína ORAI1 , Unión Proteica/efectos de los fármacos , Ratas , Molécula de Interacción Estromal 1
20.
J Biol Chem ; 287(41): 34445-54, 2012 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-22904319

RESUMEN

In pancreatic ß-cells, uptake of Ca(2+) into mitochondria facilitates metabolism-secretion coupling by activation of various matrix enzymes, thus facilitating ATP generation by oxidative phosphorylation and, in turn, augmenting insulin release. We employed an siRNA-based approach to evaluate the individual contribution of four proteins that were recently described to be engaged in mitochondrial Ca(2+) sequestration in clonal INS-1 832/13 pancreatic ß-cells: the mitochondrial Ca(2+) uptake 1 (MICU1), mitochondrial Ca(2+) uniporter (MCU), uncoupling protein 2 (UCP2), and leucine zipper EF-hand-containing transmembrane protein 1 (LETM1). Using a FRET-based genetically encoded Ca(2+) sensor targeted to mitochondria, we show that a transient knockdown of MICU1 or MCU diminished mitochondrial Ca(2+) uptake upon both intracellular Ca(2+) release and Ca(2+) entry via L-type channels. In contrast, knockdown of UCP2 and LETM1 exclusively reduced mitochondrial Ca(2+) uptake in response to either intracellular Ca(2+) release or Ca(2+) entry, respectively. Therefore, we further investigated the role of MICU1 and MCU in metabolism-secretion coupling. Diminution of MICU1 or MCU reduced mitochondrial Ca(2+) uptake in response to d-glucose, whereas d-glucose-triggered cytosolic Ca(2+) oscillations remained unaffected. Moreover, d-glucose-evoked increases in cytosolic ATP and d-glucose-stimulated insulin secretion were diminished in MICU1- or MCU-silenced cells. Our data highlight the crucial role of MICU1 and MCU in mitochondrial Ca(2+) uptake in pancreatic ß-cells and their involvement in the positive feedback required for sustained insulin secretion.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Proteínas de Transporte de Catión/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Canales de Calcio/genética , Proteínas de Unión al Calcio/genética , Proteínas de Transporte de Catión/genética , Línea Celular , Endopeptidasas/genética , Endopeptidasas/metabolismo , Técnicas de Silenciamiento del Gen , Glucosa/genética , Glucosa/metabolismo , Humanos , Insulina/genética , Secreción de Insulina , Células Secretoras de Insulina/citología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Ubiquitina Tiolesterasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA