Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Radiat Isot ; 194: 110651, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36696750

RESUMEN

The Cavezzo meteorite was recovered on January 4th, 2020, just three days after the fall observed over Northern Italy by the all-sky cameras of the Italian PRISMA fireball network. Two specimens, weighing 3.1 g (F1) and 52.2 g (F2), were collected in the predicted strewn-field and the meteorite has been classified as an L5 anomalous chondrite. The gamma-activity of the F2 sample was measured at the Monte dei Cappuccini underground Research Station (Torino, Italy) with a large-volume HPGe-NaI(Tl) spectrometer. Thanks to the high efficiency, selectivity, and low background of the spectrometer, we were able to detect fifteen cosmogenic radioisotopes. The presence of nuclides with half-lives down to a few days (47Ca, 52Mn, and 48V) undoubtedly confirmed the recent fall of the sample. The very low activity of 44Ti and 60Co was revealed with a particular coincidence between the HPGe and NaI(Tl) detectors. To obtain the detection efficiency, we have simulated the response of the detector with the GEANT4 toolkit, once the spectrometer's dead layer thickness was estimated using standards of known activity. Moreover, the simulation of the Dhajala meteorite (H3/4 chondrite) measurement allowed us to verify that the self-absorption of the sample is correctly taken into account and validate our simulations. In this contribution, we focus on the coincidence optimization techniques and the detection efficiency computation.

2.
Sci Total Environ ; 817: 152977, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35016939

RESUMEN

Rock weathering and pedogenesis are fundamental processes for element mobility in terrestrial bio-geochemical cycles and for the regulation of primary productivity in adjacent coastal marine ecosystems. Here, soils developed from volcanic ash under extreme climate conditions could play a particular role. We therefore investigated rock weathering, soil formation and the associated mobilization of trace elements and micronutrients in a pristine South Patagonian ecosystem. Weathered and unweathered basement lithologies, tephra of the 4.216 kyrs BP Mt. Burney eruption and four soil profiles are considered. The approach combines mineralogical (XRD, SEM) and inorganic geochemical (XRF, ICP-OES/MS) with organic geochemical analyses (TOC, TN, δ13C, δ15N, DOC extracts) of representative samples. Chemical weathering is quantified by mass balance calculations and 14C age constraints allow a correlation of pedogenic processes with the paleoenvironmental history of the area. Our data document that pedogenesis with initial peat formation occurred since ~2.5 kyrs BP. In these acidic peaty Andosols, intensive alteration of volcanic glass mobilized large quantities of elements, considerably surpassing leachates provided by basement rock weathering. Clay production is limited in favor of the formation of amorphous Al- and crystalline Fe-(hydr)oxides. However, tephra alteration, soil organic matter turnover rates, enhanced dissolved organic carbon export, and Fe-/Al-(hydr)oxide precipitation are closely linked and ultimately controlled by rainfall-induced water-level fluctuations, highlighting the dominant influence of the southern westerly wind belt. The transport of mobilized trace elements and micronutrients adsorbed onto suspended colloids (dissolved organic carbon, Al-humus complexes and Fe-(hydr)oxides) is redox-pH-dependent, highly variable and ultimately regulated by westerly intensity. Broader implications of this work include a new perspective on the climate-controlled micronutrient delivery for primary productivity in South Patagonian fjords, which is strongly affected by Andosol formation. Furthermore, a careful evaluation of 'ordinary' geochemical proxies in regional paleoenvironmental archives is needed to account for these unique pedogenic processes.


Asunto(s)
Ecosistema , Suelo , Clima , Suelo/química , Erupciones Volcánicas , Tiempo (Meteorología)
3.
Chimia (Aarau) ; 64(10): 705-11, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21138158

RESUMEN

The internal textures of crystals of moderately radiation-damaged monazite-(Ce) from Moss, Norway, indicate heavy, secondary chemical alteration. In fact, the cm-sized specimens are no longer mono-mineral monazite but rather a composite consisting of monazite-(Ce) and apatite pervaded by several generations of fractures filled with sulphides and a phase rich in Th, Y, and Si. This composite is virtually a 'pseudomorph' after primary euhedral monazite crystals whose faces are still well preserved. The chemical alteration has resulted in major reworking and decomposition of the primary crystals, with potentially uncontrolled elemental changes, including extensive release of Th from the primary monazite and local redeposition of radionuclides in fracture fillings. This seems to question the general alteration-resistance of orthophosphate phases in a low-temperature, 'wet' environment, and hence their suitability as potential host ceramics for the long-term immobilisation of radioactive waste.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...