Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Sci Adv ; 10(3): eadi4162, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38241362

RESUMEN

The Tat proteins of HIV-1 and simian immunodeficiency virus (SIV) are essential for activating viral transcription. In addition, Tat stimulates nuclear factor κB (NF-κB) signaling pathways to regulate viral gene expression although its molecular mechanism is unclear. Here, we report that Tat directly activates NF-κB through the interaction with TRAF6, which is an essential upstream signaling molecule of the canonical NF-κB pathway. This interaction increases TRAF6 oligomerization and auto-ubiquitination, as well as the synthesis of K63-linked polyubiquitin chains to further activate the NF-κB pathway and HIV-1 transcription. Moreover, ectopic expression of TRAF6 significantly activates HIV-1 transcription, whereas TRAF6 knockdown inhibits transcription. Furthermore, Tat-mediated activation of NF-κB through TRAF6 is conserved among HIV-1, HIV-2, and SIV isolates. Our study uncovers yet another mechanism by which HIV-1 subverts host transcriptional pathways to enhance its own transcription.


Asunto(s)
VIH-1 , FN-kappa B , Animales , FN-kappa B/metabolismo , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/metabolismo , VIH-1/metabolismo , Transducción de Señal , Ubiquitinación
2.
Nature ; 615(7953): 728-733, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36754086

RESUMEN

The APOBEC3 (A3) proteins are host antiviral cellular proteins that hypermutate the viral genome of diverse viral families. In retroviruses, this process requires A3 packaging into viral particles1-4. The lentiviruses encode a protein, Vif, that antagonizes A3 family members by targeting them for degradation. Diversification of A3 allows host escape from Vif whereas adaptations in Vif enable cross-species transmission of primate lentiviruses. How this 'molecular arms race' plays out at the structural level is unknown. Here, we report the cryogenic electron microscopy structure of human APOBEC3G (A3G) bound to HIV-1 Vif, and the hijacked cellular proteins that promote ubiquitin-mediated proteolysis. A small surface explains the molecular arms race, including a cross-species transmission event that led to the birth of HIV-1. Unexpectedly, we find that RNA is a molecular glue for the Vif-A3G interaction, enabling Vif to repress A3G by ubiquitin-dependent and -independent mechanisms. Our results suggest a model in which Vif antagonizes A3G by intercepting it in its most dangerous form for the virus-when bound to RNA and on the pathway to packaging-to prevent viral restriction. By engaging essential surfaces required for restriction, Vif exploits a vulnerability in A3G, suggesting a general mechanism by which RNA binding helps to position key residues necessary for viral antagonism of a host antiviral gene.


Asunto(s)
Desaminasa APOBEC-3G , VIH-1 , Proteolisis , Productos del Gen vif del Virus de la Inmunodeficiencia Humana , Animales , Humanos , Desaminasa APOBEC-3G/antagonistas & inhibidores , Desaminasa APOBEC-3G/química , Desaminasa APOBEC-3G/metabolismo , Desaminasa APOBEC-3G/ultraestructura , VIH-1/metabolismo , VIH-1/patogenicidad , ARN/química , ARN/metabolismo , Ubiquitina/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/química , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/ultraestructura , Microscopía por Crioelectrón , Empaquetamiento del Genoma Viral , Primates/virología
3.
J Magn Reson ; 346: 107318, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36657879

RESUMEN

Diverse cellular processes have been observed or predicted to occur in biomolecular condensates, which are comprised of proteins and nucleic acids that undergo liquid-liquid phase separation (LLPS). Protein-driven LLPS often involves weak, multivalent interactions between intrinsically disordered regions (IDRs). Due to their inherent lack of defined tertiary structures, NMR has been a powerful resource for studying the behavior and interactions of IDRs in condensates. While IDRs in proteins are necessary for phase separation, core proteins enriched in condensates often contain structured domains that are essential for their function and contribute to phase separation. How phase separation can affect the structure and conformational dynamics of structured domains is critical for understanding how biochemical reactions can be effectively regulated in cellular condensates. In this perspective, we discuss the consequences phase separation can have on structured domains and outline NMR observables we believe are useful for assessing protein structure and dynamics in condensates.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Ácidos Nucleicos , Proteínas Intrínsecamente Desordenadas/química , Condensados Biomoleculares , Ácidos Nucleicos/química , Conformación Molecular , Espectroscopía de Resonancia Magnética
4.
PLoS Pathog ; 18(9): e1010811, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36095012

RESUMEN

SARS-CoV-2 non-structural protein Nsp14 is a highly conserved enzyme necessary for viral replication. Nsp14 forms a stable complex with non-structural protein Nsp10 and exhibits exoribonuclease and N7-methyltransferase activities. Protein-interactome studies identified human sirtuin 5 (SIRT5) as a putative binding partner of Nsp14. SIRT5 is an NAD-dependent protein deacylase critical for cellular metabolism that removes succinyl and malonyl groups from lysine residues. Here we investigated the nature of this interaction and the role of SIRT5 during SARS-CoV-2 infection. We showed that SIRT5 interacts with Nsp14, but not with Nsp10, suggesting that SIRT5 and Nsp10 are parts of separate complexes. We found that SIRT5 catalytic domain is necessary for the interaction with Nsp14, but that Nsp14 does not appear to be directly deacylated by SIRT5. Furthermore, knock-out of SIRT5 or treatment with specific SIRT5 inhibitors reduced SARS-CoV-2 viral levels in cell-culture experiments. SIRT5 knock-out cells expressed higher basal levels of innate immunity markers and mounted a stronger antiviral response, independently of the Mitochondrial Antiviral Signaling Protein MAVS. Our results indicate that SIRT5 is a proviral factor necessary for efficient viral replication, which opens novel avenues for therapeutic interventions.


Asunto(s)
COVID-19 , Sirtuinas , Antivirales , Exorribonucleasas/metabolismo , Humanos , Lisina , Metiltransferasas/metabolismo , NAD , Provirus , ARN Viral/metabolismo , SARS-CoV-2 , Sirtuinas/genética , Proteínas no Estructurales Virales/metabolismo
5.
ACS Chem Biol ; 17(6): 1460-1471, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35576528

RESUMEN

Vaccinia virus (VACV) represents a family of poxviruses, which possess their own decapping machinery as a part of their strategy to eliminate host mRNAs and evade the innate immune response. D9 is one of the two encoded VACV decapping enzymes that is responsible for cap removal from the 5' end of both host mRNA transcripts and viral double-stranded RNAs. Little is known about the structural requirements for D9 inhibition by small molecules. Here, we identified a minimal D9 substrate and used it to develop a real-time fluorescence assay for inhibitor discovery and characterization. We screened a panel of nucleotide-derived substrate analogues and pharmacologically active candidates to identify several compounds with nano- and low micromolar IC50 values. m7GpppCH2p was the most potent nucleotide inhibitor (IC50 ∼ 0.08 µM), and seliciclib and CP-100356 were the most potent drug-like compounds (IC50 0.57 and 2.7 µM, respectively). The hits identified through screening inhibited D9-catalyzed decapping of 26 nt RNA substrates but were not active toward VACV D10 or human decapping enzyme, Dcp1/2. The inhibition mode for one of the compounds (CP-100356) was elucidated based on the X-ray cocrystal structure, opening the possibility for structure-based design of novel D9 inhibitors and binding probes.


Asunto(s)
Virus Vaccinia , Proteínas Virales , Endorribonucleasas/metabolismo , Fluorescencia , Humanos , Nucleótidos , Caperuzas de ARN/metabolismo , ARN Mensajero/metabolismo , Virus Vaccinia/genética , Proteínas Virales/metabolismo
6.
Structure ; 30(5): 721-732.e4, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35290794

RESUMEN

Poxviruses encode decapping enzymes that remove the protective 5' cap from both host and viral mRNAs to commit transcripts for decay by the cellular exonuclease Xrn1. Decapping by these enzymes is critical for poxvirus pathogenicity by means of simultaneously suppressing host protein synthesis and limiting the accumulation of viral double-stranded RNA (dsRNA), a trigger for antiviral responses. Here we present a high-resolution structural view of the vaccinia virus decapping enzyme D9. This Nudix enzyme contains a domain organization different from other decapping enzymes in which a three-helix bundle is inserted into the catalytic Nudix domain. The 5' mRNA cap is positioned in a bipartite active site at the interface of the two domains. Specificity for the methylated guanosine cap is achieved by stacking between conserved aromatic residues in a manner similar to that observed in canonical cap-binding proteins VP39, eIF4E, and CBP20, and distinct from eukaryotic decapping enzyme Dcp2.


Asunto(s)
Poxviridae , Proteínas Virales , Catálisis , Endorribonucleasas/química , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Poxviridae/genética , Poxviridae/metabolismo , Caperuzas de ARN/metabolismo , ARN Bicatenario , ARN Mensajero/metabolismo , Virus Vaccinia/genética , Proteínas Virales/metabolismo
7.
bioRxiv ; 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35018374

RESUMEN

SARS-CoV-2 non-structural protein Nsp14 is a highly conserved enzyme necessary for viral replication. Nsp14 forms a stable complex with non-structural protein Nsp10 and exhibits exoribonuclease and N7-methyltransferase activities. Protein-interactome studies identified human sirtuin 5 (SIRT5) as a putative binding partner of Nsp14. SIRT5 is an NAD-dependent protein deacylase critical for cellular metabolism that removes succinyl and malonyl groups from lysine residues. Here we investigated the nature of this interaction and the role of SIRT5 during SARS-CoV-2 infection. We showed that SIRT5 stably interacts with Nsp14, but not with Nsp10, suggesting that SIRT5 and Nsp10 are parts of separate complexes. We found that SIRT5 catalytic domain is necessary for the interaction with Nsp14, but that Nsp14 does not appear to be directly deacylated by SIRT5. Furthermore, knock-out of SIRT5 or treatment with specific SIRT5 inhibitors reduced SARS-CoV-2 viral levels in cell-culture experiments. SIRT5 knock-out cells expressed higher basal levels of innate immunity markers and mounted a stronger antiviral response. Our results indicate that SIRT5 is a proviral factor necessary for efficient viral replication, which opens novel avenues for therapeutic interventions.

8.
PLoS One ; 16(5): e0250318, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33983947

RESUMEN

Viral infection and pathogenesis is mediated by host protein-viral protein complexes that are important targets for therapeutic intervention as they are potentially less prone to development of drug resistance. We have identified human, recombinant antibodies (Fabs) from a phage display library that bind to three HIV-host complexes. We used these Fabs to 1) stabilize the complexes for structural studies; and 2) facilitate characterization of the function of these complexes. Specifically, we generated recombinant Fabs to Vif-CBF-ß-ELOB-ELOC (VCBC); ESCRT-I complex and AP2-complex. For each complex we measured binding affinities with KD values of Fabs ranging from 12-419 nM and performed negative stain electron microscopy (nsEM) to obtain low-resolution structures of the HIV-Fab complexes. Select Fabs were converted to scFvs to allow them to fold intracellularly and perturb HIV-host protein complex assembly without affecting other pathways. To identify these recombinant Fabs, we developed a rapid screening pipeline that uses quantitative ELISAs and nsEM to establish whether the Fabs have overlapping or independent epitopes. This pipeline approach is generally applicable to other particularly challenging antigens that are refractory to immunization strategies for antibody generation including multi-protein complexes providing specific, reproducible, and renewable antibody reagents for research and clinical applications. The curated antibodies described here are available to the scientific community for further structural and functional studies on these critical HIV host-factor proteins.


Asunto(s)
VIH-1/metabolismo , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Anticuerpos/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Humanos , Complejos Multiproteicos/metabolismo , Unión Proteica , Replicación Viral/fisiología
9.
Nat Chem Biol ; 17(5): 615-623, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33767388

RESUMEN

Cells organize biochemical processes into biological condensates. P-bodies are cytoplasmic condensates that are enriched in enzymes important for mRNA degradation and have been identified as sites of both storage and decay. How these opposing outcomes can be achieved in condensates remains unresolved. mRNA decapping immediately precedes degradation, and the Dcp1/Dcp2 decapping complex is enriched in P-bodies. Here, we show that Dcp1/Dcp2 activity is modulated in condensates and depends on the interactions promoting phase separation. We find that Dcp1/Dcp2 phase separation stabilizes an inactive conformation in Dcp2 to inhibit decapping. The activator Edc3 causes a conformational change in Dcp2 and rewires the protein-protein interactions to stimulate decapping in condensates. Disruption of the inactive conformation dysregulates decapping in condensates. Our results indicate that the regulation of enzymatic activity in condensates relies on a coupling across length scales ranging from microns to ångstroms. We propose that this regulatory mechanism may control the functional state of P-bodies and related phase-separated compartments.


Asunto(s)
Caperuzas de ARN/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/química , Sitios de Unión , Clonación Molecular , Gránulos Citoplasmáticos/química , Gránulos Citoplasmáticos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Colorantes Fluorescentes/química , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , Estabilidad del ARN , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Coloración y Etiquetado/métodos , Especificidad por Sustrato
10.
ACS Chem Biol ; 16(2): 334-343, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33439620

RESUMEN

mRNA-based therapies and vaccines constitute a disruptive technology with the potential to revolutionize modern medicine. Chemically modified 5' cap structures have provided access to mRNAs with superior translational properties that could benefit the currently flourishing mRNA field. Prime examples of compounds that enhance mRNA properties are antireverse cap analog diastereomers that contain an O-to-S substitution within the ß-phosphate (ß-S-ARCA D1 and D2), where D1 is used in clinically investigated mRNA vaccines. The compounds were previously found to have high affinity for eukaryotic translation initiation factor 4E (eIF4E) and augment translation in vitro and in vivo. However, the molecular basis for the beneficial "thio-effect" remains unclear. Here, we employed multiple biophysical techniques and captured 11 cap analog-eIF4E crystallographic structures to investigate the consequences of the ß-O-to-S or -Se substitution on the interaction with eIF4E. We determined the SP/RP configurations of ß-S-ARCA and related compounds and obtained structural insights into the binding. Unexpectedly, in both stereoisomers, the ß-S/Se atom occupies the same binding cavity between Lys162 and Arg157, indicating that the key driving force for complex stabilization is the interaction of negatively charged S/Se with positively charged amino acids. This was observed for all structural variants of the cap and required significantly different conformations of the triphosphate for each diastereomer. This finding explains why both ß-S-ARCA diastereomers have higher affinity for eIF4E than unmodified caps. Binding affinities determined for di-, tri-, and oligonucleotide cap analogs suggested that the "thio-effect" was preserved in longer RNAs. Our observations broaden the understanding of thiophosphate biochemistry and enable the rational design of translationally active mRNAs and eIF4E-targeting drugs.


Asunto(s)
Factor 4E Eucariótico de Iniciación/metabolismo , Oligonucleótidos Fosforotioatos/metabolismo , Caperuzas de ARN/metabolismo , Animales , Sitios de Unión , Línea Celular , Cristalografía por Rayos X , Factor 4E Eucariótico de Iniciación/química , Ratones , Conformación de Ácido Nucleico , Compuestos de Organoselenio/química , Compuestos de Organoselenio/metabolismo , Oligonucleótidos Fosforotioatos/química , Unión Proteica , Caperuzas de ARN/química , Electricidad Estática , Estereoisomerismo
11.
RNA ; 26(10): 1380-1388, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32513655

RESUMEN

Pat1, known as Pdc2 in fission yeast, promotes the activation and assembly of multiple proteins during mRNA decay. After deadenylation, the Pat1/Lsm1-7 complex binds to transcripts containing oligo(A) tails, which can be modified by the addition of several terminal uridine residues. Pat1 enhances Lsm1-7 binding to the 3' end, but it is unknown how this interaction is influenced by nucleotide composition. Here we examine Pat1/Lsm1-7 binding to a series of oligoribonucleotides containing different A/U contents using recombinant purified proteins from fission yeast. We observe a positive correlation between fractional uridine content and Lsm1-7 binding affinity. Addition of Pat1 broadens RNA specificity of Lsm1-7 by enhancing binding to A-rich RNAs and increases cooperativity on all oligonucleotides tested. Consistent with increased cooperativity, Pat1 promotes multimerization of the Lsm1-7 complex, which is potentiated by RNA binding. Furthermore, the inherent ability of Pat1 to multimerize drives liquid-liquid phase separation with multivalent decapping enzyme complexes of Dcp1/Dcp2. Our results uncover how Pat1 regulates RNA binding and higher order assembly by mRNA decay factors.


Asunto(s)
Estabilidad del ARN/genética , Proteínas de Unión al ARN/genética , ARN/genética , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Factores de Transcripción/genética , Citoplasma/genética , ARN Mensajero/genética , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética
12.
Cell Host Microbe ; 26(6): 739-747.e4, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31830442

RESUMEN

Primate lentiviruses encode a Vif protein that counteracts the host antiviral APOBEC3 (A3) family members. The adaptation of Vif to species-specific A3 determinants is a critical event that allowed the spillover of a lentivirus from monkey reservoirs to chimpanzees and subsequently to humans, which gave rise to HIV-1 and the acquired immune deficiency syndrome (AIDS) pandemic. How Vif-A3 protein interactions are remodeled during evolution is unclear. Here, we report a 2.94 Å crystal structure of the Vif substrate receptor complex from simian immunodeficiency virus isolated from red-capped mangabey (SIVrcm). The structure of the SIVrcm Vif complex illuminates the stage of lentiviral Vif evolution that is immediately prior to entering hominid primates. Structure-function studies reveal the adaptations that allowed SIVrcm Vif to antagonize hominid A3G. These studies show a partitioning between an evolutionarily dynamic specificity determinant and a conserved protein interacting surface on Vif that enables adaptation while maintaining protein interactions required for potent A3 antagonism.


Asunto(s)
Productos del Gen vif , Virus de la Inmunodeficiencia de los Simios , Desaminasa APOBEC-3G/metabolismo , Síndrome de Inmunodeficiencia Adquirida , Animales , Cercocebus , Cristalografía , Evolución Molecular , Productos del Gen vif/química , Productos del Gen vif/genética , VIH-1/genética , VIH-1/metabolismo , Hominidae , Interacciones Huésped-Patógeno , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Enfermedades de los Monos/virología , Pan troglodytes , Primates , Virus de la Inmunodeficiencia de los Simios/genética , Virus de la Inmunodeficiencia de los Simios/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/química , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/ultraestructura
13.
Proc Natl Acad Sci U S A ; 116(47): 23512-23517, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31690658

RESUMEN

Pat1 is a hub for mRNA metabolism, acting in pre-mRNA splicing, translation repression, and mRNA decay. A critical step in all 5'-3' mRNA decay pathways is removal of the 5' cap structure, which precedes and permits digestion of the RNA body by conserved exonucleases. During bulk 5'-3' decay, the Pat1/Lsm1-7 complex engages mRNA at the 3' end and promotes hydrolysis of the cap structure by Dcp1/Dcp2 at the 5' end through an unknown mechanism. We reconstitute Pat1 with 5' and 3' decay factors and show how it activates multiple steps in late mRNA decay. First, we find that Pat1 stabilizes binding of the Lsm1-7 complex to RNA using two conserved short-linear interaction motifs. Second, Pat1 directly activates decapping by binding elements in the disordered C-terminal extension of Dcp2, alleviating autoinhibition and promoting substrate binding. Our results uncover the molecular mechanism of how separate domains of Pat1 coordinate the assembly and activation of a decapping messenger ribonucleoprotein (mRNP) that promotes 5'-3' mRNA degradation.


Asunto(s)
Proteínas Serina-Treonina Quinasas/fisiología , Estabilidad del ARN , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/metabolismo , Secuencia de Aminoácidos , Secuencia Conservada , Modelos Moleculares , Complejos Multiproteicos , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica , Dominios Proteicos , Mapeo de Interacción de Proteínas , Caperuzas de ARN/metabolismo , Proteínas Recombinantes/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
14.
Cell Host Microbe ; 26(1): 86-99.e7, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31253590

RESUMEN

The Cullin-RING E3 ligase (CRL) family is commonly hijacked by pathogens to redirect the host ubiquitin proteasome machinery to specific targets. During HIV infection, CRL5 is hijacked by HIV Vif to target viral restriction factors of the APOBEC3 family for ubiquitination and degradation. Here, using a quantitative proteomics approach, we identify the E3 ligase ARIH2 as a regulator of CRL5-mediated APOBEC3 degradation. The CUL5Vif/CBFß complex recruits ARIH2 where it acts to transfer ubiquitin directly to the APOBEC3 targets. ARIH2 is essential for CRL5-dependent HIV infectivity in primary CD4+ T cells. Furthermore, we show that ARIH2 cooperates with CRL5 to prime other cellular substrates for polyubiquitination, suggesting this may represent a general mechanism beyond HIV infection and APOBEC3 degradation. Taken together, these data identify ARIH2 as a co-factor in the Vif-hijacked CRL5 complex that contributes to HIV infectivity and demonstrate the operation of the E1-E2-E3/E3-substrate ubiquitination mechanism in a viral infection context.


Asunto(s)
Desaminasa APOBEC-3G/metabolismo , Proteínas Cullin/metabolismo , Infecciones por VIH/patología , Interacciones Huésped-Patógeno , Evasión Inmune , Ubiquitina-Proteína Ligasas/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Linfocitos T CD4-Positivos/virología , Células Cultivadas , Humanos , Modelos Teóricos , Proteolisis , Proteoma/análisis , Replicación Viral
15.
Biophys J ; 116(8): 1432-1445, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30961890

RESUMEN

Human immunodeficiency virus-1 viral infectivity factor (Vif) is an intrinsically disordered protein responsible for the ubiquitination of the APOBEC3 (A3) antiviral proteins. Vif folds when it binds Cullin-RING E3 ligase 5 and the transcription cofactor CBF-ß. A five-protein complex containing the substrate receptor (Vif, CBF-ß, Elongin-B, Elongin-C (VCBC)) and Cullin5 (CUL5) has a published crystal structure, but dynamics of this VCBC-CUL5 complex have not been characterized. Here, we use molecular dynamics (MD) simulations and NMR to characterize the dynamics of the VCBC complex with and without CUL5 and an A3 protein bound. Our simulations show that the VCBC complex undergoes global dynamics involving twisting and clamshell opening of the complex, whereas VCBC-CUL5 maintains a more static conformation, similar to the crystal structure. This observation from MD is supported by methyl-transverse relaxation-optimized spectroscopy NMR data, which indicates that the VCBC complex without CUL5 is dynamic on the µs-ms timescale. Our NMR data also show that the VCBC complex is more conformationally restricted when bound to the antiviral APOBEC3F (one of the A3 proteins), consistent with our MD simulations. Vif contains a flexible linker region located at the hinge of the VCBC complex, which changes conformation in conjunction with the global dynamics of the complex. Like other substrate receptors, VCBC can exist alone or in complex with CUL5 and other proteins in cells. Accordingly, the VCBC complex could be a good target for therapeutics that would inhibit full assembly of the ubiquitination complex by stabilizing an alternate VCBC conformation.


Asunto(s)
Proteínas Cullin/química , Citidina Desaminasa/química , Simulación de Dinámica Molecular , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/química , Desaminasas APOBEC , Subunidad beta del Factor de Unión al Sitio Principal/química , Cristalización , Elonguina/química , Humanos , Cinética , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Relación Estructura-Actividad , Ubiquitinación
16.
Nat Struct Mol Biol ; 26(2): 147-148, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30575809

RESUMEN

The original and corrected figures are shown in the accompanying Publisher Correction.

17.
Artículo en Inglés | MEDLINE | ID: mdl-32493764

RESUMEN

Heterochromatin is a classic context for studying the mechanisms of chromatin organization. At the core of a highly conserved type of heterochromatin is the complex formed between chromatin methylated on histone H3 lysine 9 and HP1 proteins. This type of heterochromatin plays central roles in gene repression, genome stability, and nuclear mechanics. Systematic studies over the last several decades have provided insight into the biophysical mechanisms by which the HP1-chromatin complex is formed. Here, we discuss these studies together with recent findings indicating a role for phase separation in heterochromatin organization and function. We suggest that the different functions of HP1-mediated heterochromatin may rely on the increasing diversity being uncovered in the biophysical properties of HP1-chromatin complexes.

18.
Nat Struct Mol Biol ; 25(12): 1077-1085, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30518847

RESUMEN

5'-3' RNA decay pathways are critical for quality control and regulation of gene expression. Structural and biochemical studies have provided insights into the key nucleases that carry out deadenylation, decapping, and exonucleolysis during 5'-3' decay, but detailed understanding of how these activities are coordinated is only beginning to emerge. Here we review recent mechanistic insights into the control of 5'-3' RNA decay, including coupling between translation and decay, coordination between the complexes and activities that process 5' and 3' RNA termini, conformational control of enzymatic activity, liquid phase separation, and RNA modifications.


Asunto(s)
Estabilidad del ARN , ARN Mensajero/química , Regulación de la Expresión Génica , Modelos Moleculares , ARN Mensajero/metabolismo
20.
Cell Host Microbe ; 24(4): 542-557.e9, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30308158

RESUMEN

The dicistrovirus, Cricket paralysis virus (CrPV) encodes an RNA interference (RNAi) suppressor, 1A, which modulates viral virulence. Using the Drosophila model, we combined structural, biochemical, and virological approaches to elucidate the strategies by which CrPV-1A restricts RNAi immunity. The atomic resolution structure of CrPV-1A uncovered a flexible loop that interacts with Argonaute 2 (Ago-2), thereby inhibiting Ago-2 endonuclease-dependent immunity. Mutations disrupting Ago-2 binding attenuates viral pathogenesis in wild-type but not Ago-2-deficient flies. CrPV-1A also contains a BC-box motif that enables the virus to hijack a host Cul2-Rbx1-EloBC ubiquitin ligase complex, which promotes Ago-2 degradation and virus replication. Our study uncovers a viral-based dual regulatory program that restricts antiviral immunity by direct interaction with and modulation of host proteins. While the direct inhibition of Ago-2 activity provides an efficient mechanism to establish infection, the recruitment of a ubiquitin ligase complex enables CrPV-1A to amplify Ago-2 inactivation to restrict further antiviral RNAi immunity.


Asunto(s)
Proteínas Argonautas/metabolismo , Dicistroviridae/patogenicidad , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/inmunología , Drosophila melanogaster/virología , Interferencia de ARN/inmunología , Proteínas Virales/metabolismo , Animales , Proteínas Argonautas/química , Línea Celular , Proteínas de Drosophila/química , Drosophila melanogaster/genética , Humanos , Mutación , Unión Proteica , Conformación Proteica , Mapas de Interacción de Proteínas , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Virales/química , Replicación Viral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...