Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 289(1976): 20220711, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35703052

RESUMEN

Australopiths, a group of hominins from the Plio-Pleistocene of Africa, are characterized by derived traits in their crania hypothesized to strengthen the facial skeleton against feeding loads and increase the efficiency of bite force production. The crania of robust australopiths are further thought to be stronger and more efficient than those of gracile australopiths. Results of prior mechanical analyses have been broadly consistent with this hypothesis, but here we show that the predictions of the hypothesis with respect to mechanical strength are not met: some gracile australopith crania are as strong as that of a robust australopith, and the strength of gracile australopith crania overlaps substantially with that of chimpanzee crania. We hypothesize that the evolution of cranial traits that increased the efficiency of bite force production in australopiths may have simultaneously weakened the face, leading to the compensatory evolution of additional traits that reinforced the facial skeleton. The evolution of facial form in early hominins can therefore be thought of as an interplay between the need to increase the efficiency of bite force production and the need to maintain the structural integrity of the face.


Asunto(s)
Hominidae , Animales , Evolución Biológica , Fuerza de la Mordida , Cara , Fósiles , Cráneo/anatomía & histología
2.
Evolution ; 71(5): 1327-1338, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28230246

RESUMEN

Ostrich-like birds (Palaeognathae) show very little taxonomic diversity while their sister taxon (Neognathae) contains roughly 10,000 species. The main anatomical differences between the two taxa are in the crania. Palaeognaths lack an element in the bill called the lateral bar that is present in both ancestral theropods and modern neognaths, and have thin zones in the bones of the bill, and robust bony elements on the ventral surface of their crania. Here we use a combination of modeling and developmental experiments to investigate the processes that might have led to these differences. Engineering-based finite element analyses indicate that removing the lateral bars from a neognath increases mechanical stress in the upper bill and the ventral elements of the skull, regions that are either more robust or more flexible in palaeognaths. Surgically removing the lateral bar from neognath hatchlings led to similar changes. These results indicate that the lateral bar is load-bearing and suggest that this function was transferred to other bony elements when it was lost in palaeognaths. It is possible that the loss of the load-bearing lateral bar might have constrained diversification of skull morphology in palaeognaths and thus limited taxonomic diversity within the group.


Asunto(s)
Evolución Biológica , Aves/anatomía & histología , Cráneo/anatomía & histología , Animales , Pico , Femenino , Struthioniformes
3.
Anat Rec (Hoboken) ; 300(1): 171-195, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28000396

RESUMEN

Australopiths exhibit a number of derived facial features that are thought to strengthen the face against high and/or repetitive loads associated with a diet that included mechanically challenging foods. Here, we use finite element analysis (FEA) to test hypotheses related to the purported strengthening role of the zygomatic root and "anterior pillar" in australopiths. We modified our previously constructed models of Sts 5 (Australopithecus africanus) and MH1 (A. sediba) to differ in the morphology of the zygomatic root, including changes to both the shape and positioning of the zygomatic root complex, in addition to creating variants of Sts 5 lacking anterior pillars. We found that both an expanded zygomatic root and the presence of "anterior pillars" reinforce the face against feeding loads. We also found that strain orientations are most compatible with the hypothesis that the pillar evolved to resist loads associated with premolar loading, and that this morphology has an ancillary effect of strengthening the face during all loading regimes. These results provide support for the functional hypotheses. However, we found that an anteriorly positioned zygomatic root increases strain magnitudes even in models with an inflated/reinforced root complex. These results suggest that an anteriorly placed zygomatic root complex evolved to enhance the efficiency of bite force production while facial reinforcement features, such as the anterior pillar and the expanded zygomatic root, may have been selected for in part to compensate for the weakening effect of this facial configuration. Anat Rec, 300:171-195, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Hominidae/anatomía & histología , Hominidae/fisiología , Masticación/fisiología , Cráneo/fisiología , Cigoma/fisiología , Animales , Fenómenos Biomecánicos/fisiología , Fuerza de la Mordida , Dieta , Conducta Alimentaria/fisiología , Análisis de Elementos Finitos , Modelos Teóricos , Cráneo/anatomía & histología , Cigoma/anatomía & histología
4.
Anat Rec (Hoboken) ; 299(12): 1734-1752, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27870343

RESUMEN

Mammalian zygomatic arch shape is remarkably variable, ranging from nearly cylindrical to blade-like in cross section. Based on geometry, the arch can be hypothesized to be a sub-structural beam whose ability to resist deformation is related to cross sectional shape. We expect zygomatic arches with different cross sectional shapes to vary in the degree to which they resist local bending and torsion due to the contraction of the masseter muscle. A stiffer arch may lead to an increase in the relative proportion of applied muscle load being transmitted through the arch to other cranial regions, resulting in elevated cranial stress (and thus, strain). Here, we examine the mechanics of the zygomatic arch using a series of finite element modeling experiments in which the cross section of the arch of Pan troglodytes has been modified to conform to idealized shapes (cylindrical, elliptical, blade-like). We find that the shape of the zygomatic arch has local effects on stain that do not conform to beam theory. One exception is that possessing a blade-like arch leads to elevated strains at the postorbital zygomatic junction and just below the orbits. Furthermore, although modeling the arch as solid cortical bone did not have the effect of elevating strains in other parts of the face, as had been expected, it does have a small effect on stress associated with masseter contraction. These results are counterintuitive. Even though the arch has simple beam-like geometry, we fail to find a simple mechanical explanation for the diversity of arch shape. Anat Rec, 299:1734-1752, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Masticación/fisiología , Estrés Mecánico , Cigoma/anatomía & histología , Cigoma/fisiología , Animales , Fenómenos Biomecánicos , Análisis de Elementos Finitos , Pan troglodytes , Cráneo/anatomía & histología , Cráneo/fisiología
5.
PeerJ ; 4: e2242, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27547550

RESUMEN

The evolution of the modern human (Homo sapiens) cranium is characterized by a reduction in the size of the feeding system, including reductions in the size of the facial skeleton, postcanine teeth, and the muscles involved in biting and chewing. The conventional view hypothesizes that gracilization of the human feeding system is related to a shift toward eating foods that were less mechanically challenging to consume and/or foods that were processed using tools before being ingested. This hypothesis predicts that human feeding systems should not be well-configured to produce forceful bites and that the cranium should be structurally weak. An alternate hypothesis, based on the observation that humans have mechanically efficient jaw adductors, states that the modern human face is adapted to generate and withstand high biting forces. We used finite element analysis (FEA) to test two opposing mechanical hypotheses: that compared to our closest living relative, chimpanzees (Pan troglodytes), the modern human craniofacial skeleton is (1) less well configured, or (2) better configured to generate and withstand high magnitude bite forces. We considered intraspecific variation in our examination of human feeding biomechanics by examining a sample of geographically diverse crania that differed notably in shape. We found that our biomechanical models of human crania had broadly similar mechanical behavior despite their shape variation and were, on average, less structurally stiff than the crania of chimpanzees during unilateral biting when loaded with physiologically-scaled muscle loads. Our results also show that modern humans are efficient producers of bite force, consistent with previous analyses. However, highly tensile reaction forces were generated at the working (biting) side jaw joint during unilateral molar bites in which the chewing muscles were recruited with bilateral symmetry. In life, such a configuration would have increased the risk of joint dislocation and constrained the maximum recruitment levels of the masticatory muscles on the balancing (non-biting) side of the head. Our results do not necessarily conflict with the hypothesis that anterior tooth (incisors, canines, premolars) biting could have been selectively important in humans, although the reduced size of the premolars in humans has been shown to increase the risk of tooth crown fracture. We interpret our results to suggest that human craniofacial evolution was probably not driven by selection for high magnitude unilateral biting, and that increased masticatory muscle efficiency in humans is likely to be a secondary byproduct of selection for some function unrelated to forceful biting behaviors. These results are consistent with the hypothesis that a shift to softer foods and/or the innovation of pre-oral food processing techniques relaxed selective pressures maintaining craniofacial features that favor forceful biting and chewing behaviors, leading to the characteristically small and gracile faces of modern humans.

6.
J Biomed Inform ; 62: 181-94, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27401857

RESUMEN

The process of engineering design requires the product development team to balance the needs and limitations of many stakeholders, including those of the user, regulatory organizations, and the designing institution. This is particularly true in medical device design, where additional consideration must be given for a much more complex user-base that can only be accessed on a limited basis. Given this inherent challenge, few projects exist that consider design domain concepts, such as aspects of a detailed design, a detailed view of various stakeholders and their capabilities, along with the user-needs simultaneously. In this paper, we present a novel information model approach that combines a detailed model of design elements with a model of the design itself, customer requirements, and of the capabilities of the customer themselves. The information model is used to facilitate knowledge capture and automated reasoning across domains with a minimal set of rules by adopting a terminology that treats customer and design specific factors identically, thus enabling straightforward assessments. A uniqueness of this approach is that it systematically provides an integrated perspective on the key usability information that drive design decisions towards more universal or effective outcomes with the very design information impacted by the usability information. This can lead to cost-efficient optimal designs based on a direct inclusion of the needs of customers alongside those of business, marketing, and engineering requirements. Two case studies are presented to show the method's potential as a more effective knowledge management tool with built-in automated inferences that provide design insight, as well as its overall effectiveness as a platform to develop and execute medical device design from a holistic perspective.


Asunto(s)
Diseño de Equipo , Equipos y Suministros , Comercio , Procesamiento Automatizado de Datos , Humanos , Modelos Teóricos
7.
Comput Methods Biomech Biomed Engin ; 19(16): 1772-1784, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27174200

RESUMEN

OBJECTIVES: The purpose of this study is to develop a validated 3D finite element model of the pelvic floor system which can offer insights into the mechanics of anterior vaginal wall prolapse and have the ability to assess biomedical device treatment methods. The finite element results should accurately mimic the clinical findings of prolapse due to intra-abdominal pressure (IAP) and soft tissues impairment conditions. METHODS: A 3D model of pelvic system was created in Creo Parametric 2.0 based on MRI Images, which included uterus, cervix, vagina, cardinal ligaments, uterosacral ligaments, and a simplified levator plate and rectum. The geometrical model was imported into ANSYS Workbench 14.5. Mechanical properties of soft tissues were based on experimental data of tensile test results from current literature. Studies were conducted for IAP loadings on the vaginal wall and uterus, increasing from lowest to extreme values. RESULTS: Anterior vaginal wall collapse occurred at an IAP value corresponding to maximal valsalva and showed similar collapsed shape as clinical findings. Prolapse conditions exhibited high sensitivity to vaginal wall stiffness, whereas healthy tissues was found to support the vagina against prolapse. Ligament impairment was found to have only a secondary effect on prolapse.


Asunto(s)
Análisis de Elementos Finitos , Prolapso de Órgano Pélvico/patología , Simulación por Computador , Femenino , Humanos , Imagenología Tridimensional , Ligamentos/patología , Imagen por Resonancia Magnética/métodos , Modelos Anatómicos , Especificidad de Órganos , Estrés Mecánico
8.
Nat Commun ; 7: 10596, 2016 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-26853550

RESUMEN

Australopithecus sediba has been hypothesized to be a close relative of the genus Homo. Here we show that MH1, the type specimen of A. sediba, was not optimized to produce high molar bite force and appears to have been limited in its ability to consume foods that were mechanically challenging to eat. Dental microwear data have previously been interpreted as indicating that A. sediba consumed hard foods, so our findings illustrate that mechanical data are essential if one aims to reconstruct a relatively complete picture of feeding adaptations in extinct hominins. An implication of our study is that the key to understanding the origin of Homo lies in understanding how environmental changes disrupted gracile australopith niches. Resulting selection pressures led to changes in diet and dietary adaption that set the stage for the emergence of our genus.


Asunto(s)
Fuerza de la Mordida , Simulación por Computador , Dieta , Hominidae , Maxilares/fisiología , Desgaste de los Dientes , Animales , Alimentos , Fósiles , Diente Molar , Pan troglodytes
9.
J Biomed Inform ; 55: 218-30, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25956618

RESUMEN

Medical device design is a challenging process, often requiring collaboration between medical and engineering domain experts. This collaboration can be best institutionalized through systematic knowledge transfer between the two domains coupled with effective knowledge management throughout the design innovation process. Toward this goal, we present the development of a semantic framework for medical device design that unifies a large medical ontology with detailed engineering functional models along with the repository of design innovation information contained in the US Patent Database. As part of our development, existing medical, engineering, and patent document ontologies were modified and interlinked to create a comprehensive medical device innovation and design tool with appropriate properties and semantic relations to facilitate knowledge capture, enrich existing knowledge, and enable effective knowledge reuse for different scenarios. The result is a Concept Ideation Framework for Medical Device Design (CIFMeDD). Key features of the resulting framework include function-based searching and automated inter-domain reasoning to uniquely enable identification of functionally similar procedures, tools, and inventions from multiple domains based on simple semantic searches. The significance and usefulness of the resulting framework for aiding in conceptual design and innovation in the medical realm are explored via two case studies examining medical device design problems.


Asunto(s)
Bases de Datos Factuales , Diseño de Equipo , Equipos y Suministros/clasificación , Bases del Conocimiento , Vocabulario Controlado , Diseño Asistido por Computadora , Sistemas de Administración de Bases de Datos/organización & administración , Interfaz Usuario-Computador
10.
Anat Rec (Hoboken) ; 298(1): 122-44, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25529239

RESUMEN

In a broad range of evolutionary studies, an understanding of intraspecific variation is needed in order to contextualize and interpret the meaning of variation between species. However, mechanical analyses of primate crania using experimental or modeling methods typically encounter logistical constraints that force them to rely on data gathered from only one or a few individuals. This results in a lack of knowledge concerning the mechanical significance of intraspecific shape variation that limits our ability to infer the significance of interspecific differences. This study uses geometric morphometric methods (GM) and finite element analysis (FEA) to examine the biomechanical implications of shape variation in chimpanzee crania, thereby providing a comparative context in which to interpret shape-related mechanical variation between hominin species. Six finite element models (FEMs) of chimpanzee crania were constructed from CT scans following shape-space Principal Component Analysis (PCA) of a matrix of 709 Procrustes coordinates (digitized onto 21 specimens) to identify the individuals at the extremes of the first three principal components. The FEMs were assigned the material properties of bone and were loaded and constrained to simulate maximal bites on the P(3) and M(2) . Resulting strains indicate that intraspecific cranial variation in morphology is associated with quantitatively high levels of variation in strain magnitudes, but qualitatively little variation in the distribution of strain concentrations. Thus, interspecific comparisons should include considerations of the spatial patterning of strains rather than focus only on their magnitudes.


Asunto(s)
Análisis de Elementos Finitos , Pan troglodytes/anatomía & histología , Pan troglodytes/fisiología , Cráneo/anatomía & histología , Cráneo/fisiología , Animales , Fenómenos Biomecánicos/fisiología , Fuerza de la Mordida , Femenino , Masculino , Músculos Masticadores/anatomía & histología , Músculos Masticadores/fisiología , Matemática , Modelos Biológicos , Pan troglodytes/clasificación , Análisis de Componente Principal , Especificidad de la Especie
11.
Anat Rec (Hoboken) ; 298(1): 145-67, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25529240

RESUMEN

The African Plio-Pleistocene hominins known as australopiths evolved derived craniodental features frequently interpreted as adaptations for feeding on either hard, or compliant/tough foods. Among australopiths, Paranthropus boisei is the most robust form, exhibiting traits traditionally hypothesized to produce high bite forces efficiently and strengthen the face against feeding stresses. However, recent mechanical analyses imply that P. boisei may not have been an efficient producer of bite force and that robust morphology in primates is not necessarily strong. Here we use an engineering method, finite element analysis, to show that the facial skeleton of P. boisei is structurally strong, exhibits a strain pattern different from that in chimpanzees (Pan troglodytes) and Australopithecus africanus, and efficiently produces high bite force. It has been suggested that P. boisei consumed a diet of compliant/tough foods like grass blades and sedge pith. However, the blunt occlusal topography of this and other species suggests that australopiths are adapted to consume hard foods, perhaps including grass and sedge seeds. A consideration of evolutionary trends in morphology relating to feeding mechanics suggests that food processing behaviors in gracile australopiths evidently were disrupted by environmental change, perhaps contributing to the eventual evolution of Homo and Paranthropus.


Asunto(s)
Arco Dental/anatomía & histología , Arco Dental/fisiología , Dieta , Hominidae/anatomía & histología , Hominidae/fisiología , Cráneo/anatomía & histología , Cráneo/fisiología , Adaptación Fisiológica/fisiología , Animales , Evolución Biológica , Fenómenos Biomecánicos/fisiología , Fuerza de la Mordida , Ingestión de Alimentos/fisiología , Ecología , Análisis de Elementos Finitos , Imagenología Tridimensional , Matemática , Modelos Biológicos
12.
J R Soc Interface ; 11(101): 20140965, 2014 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-25320068

RESUMEN

Teeth are often assumed to be optimal for their function, which allows researchers to derive dietary signatures from tooth shape. Most tooth shape analyses normalize for tooth size, potentially masking the relationship between relative food item size and tooth shape. Here, we model how relative food item size may affect optimal tooth cusp radius of curvature (RoC) during the fracture of brittle food items using a parametric finite-element (FE) model of a four-cusped molar. Morphospaces were created for four different food item sizes by altering cusp RoCs to determine whether optimal tooth shape changed as food item size changed. The morphospaces were also used to investigate whether variation in efficiency metrics (i.e. stresses, energy and optimality) changed as food item size changed. We found that optimal tooth shape changed as food item size changed, but that all optimal morphologies were similar, with one dull cusp that promoted high stresses in the food item and three cusps that acted to stabilize the food item. There were also positive relationships between food item size and the coefficients of variation for stresses in food item and optimality, and negative relationships between food item size and the coefficients of variation for stresses in the enamel and strain energy absorbed by the food item. These results suggest that relative food item size may play a role in selecting for optimal tooth shape, and the magnitude of these selective forces may change depending on food item size and which efficiency metric is being selected.


Asunto(s)
Alimentos , Modelos Biológicos , Diente/anatomía & histología , Diente/fisiología , Vibración , Animales , Análisis de Elementos Finitos , Humanos , Estrés Mecánico
13.
J Biomech Eng ; 136(8)2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24860864

RESUMEN

Bruising, the result of capillary failure due to trauma, is a common indication of abuse. However, the etiology of capillary failure has yet to be determined as the scale change from tissue to capillary represents several orders of magnitude. As a first step toward determining bruise etiology, we have developed a multilevel hierarchical finite element model (FEM) of a portion of the upper human arm using a commercial finite element tool and a series of three interconnected hierarchical submodels. The third and final submodel contains a portion of the muscle tissue in which a single capillary is embedded. Nonlinear, hyperelastic material properties were applied to skin, adipose, muscle, and capillary wall materials. A pseudostrain energy method was implemented to subtract rigid-body-like motion of the submodel volume experienced in the global model, and was critical for convergence and successful analyses in the submodels. The deformation and hoop stresses in the capillary wall were determined and compared with published capillary failure stress. For the dynamic load applied to the skin of the arm (physiologically simulating a punch), the model predicted that approximately 8% volume fraction of the capillary wall was above the reference capillary failure stress, indicating bruising would likely occur.


Asunto(s)
Capilares/lesiones , Tejido Conectivo/irrigación sanguínea , Contusiones , Análisis de Elementos Finitos , Fenómenos Mecánicos , Fenómenos Biomecánicos , Humanos , Pulmón/irrigación sanguínea
14.
J Theor Biol ; 341: 53-63, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24099719

RESUMEN

Most long limb bones in terrestrial mammals exhibit a longitudinal curvature and have been found to be loaded in bending. Bone curvature poses a paradox in terms of the mechanical function of limb bones, for many believe the curvature in these bones increases bending stress, potentially reducing the bone's load carrying capacity (i.e., its mechanical strength). The aim of this study is to investigate the role of longitudinal bone curvature in the design of limb bones. In particular, it has been hypothesized that bone curvature results in a trade-off between the bone's mechanical strength and its bending predictability. We employed finite element analysis (FEA) of abstract and realistic human femora to address this issue. Geometrically simplified human femur models with different curvatures were developed and analyzed with a commercial FEA tool to examine how curvature affects the bone's bending predictability and load carrying capacity. Results were post-processed to yield probability density functions (PDFs) describing the circumferential location of maximum equivalent stress for various curvatures in order to assess bending predictability. To validate our findings, a finite element model was built from a CT scan of a real human femur and compared to the simplified femur model. We found general agreement in trends but some quantitative differences most likely due to the geometric differences between the digitally reconstructed and the simplified finite element models. As hypothesized by others, our results support the hypothesis that bone curvature can increase bending predictability, but at the expense of bone strength.


Asunto(s)
Fémur/anatomía & histología , Fémur/fisiología , Modelos Anatómicos , Adulto , Anciano , Fenómenos Biomecánicos/fisiología , Fémur/diagnóstico por imagen , Análisis de Elementos Finitos , Humanos , Persona de Mediana Edad , Estrés Mecánico , Tomografía Computarizada por Rayos X , Soporte de Peso/fisiología , Adulto Joven
15.
Clin Oral Investig ; 18(2): 369-75, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-23504207

RESUMEN

OBJECTIVES: This study aimed to compare the patterns of stress distribution in a lower second premolar using three conventional occlusal loadings and two more realistic loading scenarios based on occlusal contact areas. MATERIALS AND METHODS: The teeth of a dried modern human skull were micro-CT scanned in maximum intercuspation contact with a Viscom X8060 NDT X-ray system. A kinematic analysis of the surface contacts between antagonistic right upper and lower teeth during the power stroke was carried out in the Occlusal Fingerprint Analyser (OFA) software. Stress distribution in the lower right second premolar was analysed using three-dimensional finite element (FE) methods, considering occlusal information taken from OFA results (cases 4-5). The output was compared to that obtained by loading the tooth with a single point force (cases 1-3). RESULTS: Results for cases 1-3 differ considerable from those of cases 4-5. The latter show that tensile stresses might be concentrated in grooves and fissures of the occlusal surface, in the marginal ridges, in the disto-lingual and in the distal side of the root. Moreover, the premolar experiences high tensile stresses in the buccal aspect of the crown, supporting the idea that abfraction might be a dominant factor in the aetiology of non-carious cervical lesions. CONCLUSIONS: The application of FE methods in dental biomechanics can be advanced considering individual wear patterns. CLINICAL RELEVANCE: More realistic occlusal loadings are of importance for both new developments in prosthetic dentistry and improvements of materials for tooth restoration, as well to address open questions about the worldwide spread problem of dental failure.


Asunto(s)
Diente Premolar/fisiopatología , Análisis del Estrés Dental/métodos , Diente Premolar/diagnóstico por imagen , Análisis de Elementos Finitos , Humanos , Microtomografía por Rayos X
16.
Am J Phys Anthropol ; 153(2): 260-8, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24242913

RESUMEN

It has been hypothesized that the extensively overlapping temporal and parietal bones of the squamosal sutures in Paranthropus boisei are adaptations for withstanding loads associated with feeding. Finite element analysis (FEA) was used to investigate the biomechanical effects of suture size (i.e., the area of overlap between the temporal and parietal bones) on stress, strain energy, and strain ratio in the squamosal sutures of Pan troglodytes and P. boisei (specimen OH 5) during biting. Finite element models (FEMs) of OH 5 and a P. troglodytes cranium were constructed from CT scans. These models contain sutures that approximate the actual suture sizes preserved in both crania. The FEM of Pan was then modified to create two additional FEMs with squamosal sutures that are 50% smaller and 25% larger than those in the original model. Comparisons among the models test the effect of suture size on the structural integrity of the squamosal suture as the temporal squama and parietal bone move relative to each other during simulated premolar biting. Results indicate that with increasing suture size there is a decreased risk of suture failure, and that maximum stress values in the OH 5 suture were favorable compared to values in the Pan model with the normal suture size. Strain ratios suggest that shear is an important strain regime in the squamosal suture. This study is consistent with the hypothesis that larger sutures help reduce the likelihood of suture failure under high biting loads.


Asunto(s)
Fenómenos Biomecánicos/fisiología , Suturas Craneales/anatomía & histología , Suturas Craneales/fisiología , Hominidae/anatomía & histología , Hominidae/fisiología , Cráneo/fisiología , Adaptación Fisiológica , Animales , Antropología Física , Módulo de Elasticidad , Análisis de Elementos Finitos , Fósiles , Cráneo/anatomía & histología
17.
Am J Phys Anthropol ; 151(3): 339-55, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23794330

RESUMEN

Recent biomechanical analyses examining the feeding adaptations of early hominins have yielded results consistent with the hypothesis that hard foods exerted a selection pressure that influenced the evolution of australopith morphology. However, this hypothesis appears inconsistent with recent reconstructions of early hominin diet based on dental microwear and stable isotopes. Thus, it is likely that either the diets of some australopiths included a high proportion of foods these taxa were poorly adapted to consume (i.e., foods that they would not have processed efficiently), or that aspects of what we thought we knew about the functional morphology of teeth must be wrong. Evaluation of these possibilities requires a recognition that analyses based on microwear, isotopes, finite element modeling, and enamel chips and cracks each test different types of hypotheses and allow different types of inferences. Microwear and isotopic analyses are best suited to reconstructing broad dietary patterns, but are limited in their ability to falsify specific hypotheses about morphological adaptation. Conversely, finite element analysis is a tool for evaluating the mechanical basis of form-function relationships, but says little about the frequency with which specific behaviors were performed or the particular types of food that were consumed. Enamel chip and crack analyses are means of both reconstructing diet and examining biomechanics. We suggest that current evidence is consistent with the hypothesis that certain derived australopith traits are adaptations for consuming hard foods, but that australopiths had generalized diets that could include high proportions of foods that were both compliant and tough.


Asunto(s)
Adaptación Biológica , Antropología/métodos , Evolución Biológica , Dieta , Hominidae/anatomía & histología , Animales , Isótopos de Carbono/análisis , Esmalte Dental/anatomía & histología , Ingestión de Alimentos , Análisis de Elementos Finitos , Hominidae/fisiología
18.
PLoS One ; 8(4): e62263, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23638020

RESUMEN

Over the last century, humans from industrialized societies have witnessed a radical increase in some dental diseases. A severe problem concerns the loss of dental materials (enamel and dentine) at the buccal cervical region of the tooth. This "modern-day" pathology, called non-carious cervical lesions (NCCLs), is ubiquitous and worldwide spread, but is very sporadic in modern humans from pre-industrialized societies. Scholars believe that several factors are involved, but the real dynamics behind this pathology are far from being understood. Here we use an engineering approach, finite element analysis (FEA), to suggest that the lack of dental wear, characteristic of industrialized societies, might be a major factor leading to NCCLs. Occlusal loads were applied to high resolution finite element models of lower second premolars (P2) to demonstrate that slightly worn P2s envisage high tensile stresses in the buccal cervical region, but when worn down artificially in the laboratory the pattern of stress distribution changes and the tensile stresses decrease, matching the results obtained in naturally worn P2s. In the modern industrialized world, individuals at advanced ages show very moderate dental wear when compared to past societies, and teeth are exposed to high tensile stresses at the buccal cervical region for decades longer. This is the most likely mechanism explaining enamel loss in the cervical region, and may favor the activity of other disruptive processes such as biocorrosion. Because of the lack of dental abrasion, our masticatory apparatus faces new challenges that can only be understood in an evolutionary perspective.


Asunto(s)
Desgaste de los Dientes/etiología , Adaptación Fisiológica , Simulación por Computador , Oclusión Dental , Análisis del Estrés Dental , Femenino , Humanos , Masculino , Modelos Biológicos , Resistencia a la Tracción , Enfermedades Dentales/complicaciones , Desgaste de los Dientes/patología
19.
J R Soc Interface ; 10(84): 20130240, 2013 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-23635495

RESUMEN

Tooth cusp sharpness, measured by radius of curvature (RoC), has been predicted to play a significant role in brittle/hard food item fracture. Here, we set out to test three existing hypotheses about this relationship: namely, the Blunt and Strong Cusp hypotheses, which predict that dull cusps will be most efficient at brittle food item fracture, and the Pointed Cusp hypothesis, which predicts that sharp cusps will be most efficient at brittle food item fracture using a four cusp bunodont molar. We also put forth and test the newly constructed Complex Cusp hypothesis, which predicts that a mixture of dull and sharp cusps will be most efficient at brittle food item fracture. We tested the four hypotheses using finite-element models of four cusped, bunodont molars. When testing the three existing hypotheses, we assumed all cusps had the same level of sharpness (RoC), and gained partial support for the Blunt Cusp hypotheses. We found no support for the Pointed Cusp or Strong Cusp hypotheses. We used the Taguchi sampling method to test the Complex Cusps hypothesis with a morphospace created by independently varying the radii of curvature of the four cusps in the buccolingual and mesiodistal directions. The optimal occlusal morphology for fracturing brittle food items consists of a combination of sharp and dull cusps, which creates high stress concentrations in the food item while stabilizing the food item and keeping the stress concentrations in the enamel low. This model performed better than the Blunt Cusp hypothesis, suggesting a role for optimality in the evolution of cusp form.


Asunto(s)
Oclusión Dental , Masticación/fisiología , Modelos Biológicos , Corona del Diente/anatomía & histología , Fenómenos Biomecánicos , Módulo de Elasticidad , Análisis de Elementos Finitos , Humanos , Estrés Mecánico , Resistencia a la Tracción
20.
Evolution ; 66(8): 2587-98, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22834755

RESUMEN

The morphology and biomechanics of the vertebrate skull reflect the physical properties of diet and behaviors used in food acquisition and processing. We use phyllostomid bats, the most diverse mammalian dietary radiation, to investigate if and how changes in dietary hardness and loading behaviors during feeding shaped the evolution of skull morphology and biomechanics. When selective regimes of food hardness are modeled, we found that species consuming harder foods have evolved skull shapes that allow for more efficient bite force production. These species have shorter skulls and a greater reliance on the temporalis muscle, both of which contribute to a higher mechanical advantage at an intermediate gape angle. The evolution of cranial morphology and biomechanics also appears to be related to loading behaviors. Evolutionary changes in skull shape and the relative role of the temporalis and masseter in generating bite force are correlated with changes in the use of torsional and bending loading behaviors. Functional equivalence appears to have evolved independently among three lineages of species that feed on liquids and are not obviously morphologically similar. These trends in cranial morphology and biomechanics provide insights into behavioral and ecological factors shaping the skull of a trophically diverse clade of mammals.


Asunto(s)
Evolución Biológica , Quirópteros/anatomía & histología , Quirópteros/fisiología , Dieta , Conducta Alimentaria , Cráneo/anatomía & histología , Animales , Fenómenos Biomecánicos , Fuerza de la Mordida , Cráneo/fisiología , Músculo Temporal/anatomía & histología , Músculo Temporal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...