Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 22(6): e3002651, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38889194

RESUMEN

Alpha oscillations play a vital role in managing the brain's resources, inhibiting neural activity as a function of their phase and amplitude, and are changed in many brain disorders. Developing minimally invasive tools to modulate alpha activity and identifying the parameters that determine its response to exogenous modulators is essential for the implementation of focussed interventions. We introduce Alpha Closed-Loop Auditory Stimulation (αCLAS) as an EEG-based method to modulate and investigate these brain rhythms in humans with specificity and selectivity, using targeted auditory stimulation. Across a series of independent experiments, we demonstrate that αCLAS alters alpha power, frequency, and connectivity in a phase, amplitude, and topography-dependent manner. Using single-pulse-αCLAS, we show that the effects of auditory stimuli on alpha oscillations can be explained within the theoretical framework of oscillator theory and a phase-reset mechanism. Finally, we demonstrate the functional relevance of our approach by showing that αCLAS can interfere with sleep onset dynamics in a phase-dependent manner.


Asunto(s)
Estimulación Acústica , Ritmo alfa , Electroencefalografía , Humanos , Estimulación Acústica/métodos , Masculino , Adulto , Ritmo alfa/fisiología , Electroencefalografía/métodos , Femenino , Adulto Joven , Sueño/fisiología , Encéfalo/fisiología
2.
Cell Rep ; 43(6): 114274, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796852

RESUMEN

A signal mixer facilitates rich computation, which has been the building block of modern telecommunication. This frequency mixing produces new signals at the sum and difference frequencies of input signals, enabling powerful operations such as heterodyning and multiplexing. Here, we report that a neuron is a signal mixer. We found through ex vivo and in vivo whole-cell measurements that neurons mix exogenous (controlled) and endogenous (spontaneous) subthreshold membrane potential oscillations, producing new oscillation frequencies, and that neural mixing originates in voltage-gated ion channels. Furthermore, we demonstrate that mixing is evident in human brain activity and is associated with cognitive functions. We found that the human electroencephalogram displays distinct clusters of local and inter-region mixing and that conversion of the salient posterior alpha-beta oscillations into gamma-band oscillations regulates visual attention. Signal mixing may enable individual neurons to sculpt the spectrum of neural circuit oscillations and utilize them for computational operations.


Asunto(s)
Encéfalo , Neuronas , Humanos , Neuronas/fisiología , Neuronas/metabolismo , Encéfalo/fisiología , Encéfalo/citología , Electroencefalografía , Animales , Masculino , Potenciales de la Membrana/fisiología , Adulto , Femenino
3.
Neuroimage Clin ; 42: 103599, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38608376

RESUMEN

Right hemisphere stroke patients frequently present with a combination of lateralised and non-lateralised attentional deficits characteristic of the neglect syndrome. Attentional deficits are associated with poor functional outcome and are challenging to treat, with non-lateralised deficits often persisting into the chronic stage and representing a common complaint among patients and families. In this study, we investigated the effects of non-invasive brain stimulation on non-lateralised attentional deficits in right-hemispheric stroke. In a randomised double-blind sham-controlled crossover study, twenty-two patients received real and sham transcranial Direct Current Stimulation (tDCS) whilst performing a non-lateralised attentional task. A high definition tDCS montage guided by stimulation modelling was employed to maximise current delivery over the right dorsolateral prefrontal cortex, a key node in the vigilance network. In a parallel study, we examined brain network response to this tDCS montage by carrying out concurrent fMRI during stimulation in healthy participants and patients. At the group level, stimulation improved target detection in patients, reducing overall error rate when compared with sham stimulation. TDCS boosted performance throughout the duration of the task, with its effects briefly outlasting stimulation cessation. Exploratory lesion analysis indicated that response to stimulation was related to lesion location rather than volume. In particular, reduced stimulation response was associated with damage to the thalamus and postcentral gyrus. Concurrent stimulation-fMRI revealed that tDCS did not affect local connectivity but influenced functional connectivity within large-scale networks in the contralesional hemisphere. This combined behavioural and functional imaging approach shows that brain stimulation targeted to surviving tissue in the ipsilesional hemisphere improves non-lateralised attentional deficits following stroke. This effect may be exerted via contralesional network effects.


Asunto(s)
Atención , Estudios Cruzados , Imagen por Resonancia Magnética , Accidente Cerebrovascular , Estimulación Transcraneal de Corriente Directa , Humanos , Masculino , Femenino , Estimulación Transcraneal de Corriente Directa/métodos , Persona de Mediana Edad , Accidente Cerebrovascular/terapia , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/complicaciones , Anciano , Atención/fisiología , Método Doble Ciego , Adulto , Lateralidad Funcional/fisiología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen
4.
Brain Stimul ; 17(1): 92-103, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38145754

RESUMEN

BACKGROUND: Electrical stimulation involving temporal interference of two different kHz frequency sinusoidal electric fields (temporal interference (TI)) enables non-invasive deep brain stimulation, by creating an electric field that is amplitude modulated at the slow difference frequency (within the neural range), at the target brain region. OBJECTIVE: Here, we investigate temporal interference neural stimulation using square, rather than sinusoidal, electric fields that create an electric field that is pulse-width, but not amplitude, modulated at the difference frequency (pulse-width modulated temporal interference, (PWM-TI)). METHODS/RESULTS: We show, using ex-vivo single-cell recordings and in-vivo calcium imaging, that PWM-TI effectively stimulates neural activity at the difference frequency at a similar efficiency to traditional TI. We then demonstrate, using computational modelling, that the PWM stimulation waveform induces amplitude-modulated membrane potential depolarization due to the membrane's intrinsic low-pass filtering property. CONCLUSIONS: PWM-TI can effectively drive neural activity at the difference frequency. The PWM-TI mechanism involves converting an envelope amplitude-fixed PWM field to an amplitude-modulated membrane potential via the low-pass filtering of the passive neural membrane. Unveiling the biophysics underpinning the neural response to complex electric fields may facilitate the development of new brain stimulation strategies with improved precision and efficiency.


Asunto(s)
Encéfalo , Simulación por Computador , Estimulación Eléctrica
6.
Nat Neurosci ; 26(11): 2005-2016, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37857774

RESUMEN

The stimulation of deep brain structures has thus far only been possible with invasive methods. Transcranial electrical temporal interference stimulation (tTIS) is a novel, noninvasive technology that might overcome this limitation. The initial proof-of-concept was obtained through modeling, physics experiments and rodent models. Here we show successful noninvasive neuromodulation of the striatum via tTIS in humans using computational modeling, functional magnetic resonance imaging studies and behavioral evaluations. Theta-burst patterned striatal tTIS increased activity in the striatum and associated motor network. Furthermore, striatal tTIS enhanced motor performance, especially in healthy older participants as they have lower natural learning skills than younger subjects. These findings place tTIS as an exciting new method to target deep brain structures in humans noninvasively, thus enhancing our understanding of their functional role. Moreover, our results lay the groundwork for innovative, noninvasive treatment strategies for brain disorders in which deep striatal structures play key pathophysiological roles.


Asunto(s)
Destreza Motora , Estimulación Magnética Transcraneal , Humanos , Estimulación Magnética Transcraneal/métodos , Aprendizaje/fisiología , Encéfalo , Cuerpo Estriado/fisiología
7.
Nat Neurosci ; 26(11): 1994-2004, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37857775

RESUMEN

Deep brain stimulation (DBS) via implanted electrodes is used worldwide to treat patients with severe neurological and psychiatric disorders. However, its invasiveness precludes widespread clinical use and deployment in research. Temporal interference (TI) is a strategy for non-invasive steerable DBS using multiple kHz-range electric fields with a difference frequency within the range of neural activity. Here we report the validation of the non-invasive DBS concept in humans. We used electric field modeling and measurements in a human cadaver to verify that the locus of the transcranial TI stimulation can be steerably focused in the hippocampus with minimal exposure to the overlying cortex. We then used functional magnetic resonance imaging and behavioral experiments to show that TI stimulation can focally modulate hippocampal activity and enhance the accuracy of episodic memories in healthy humans. Our results demonstrate targeted, non-invasive electrical stimulation of deep structures in the human brain.


Asunto(s)
Encéfalo , Estimulación Encefálica Profunda , Humanos , Encéfalo/fisiología , Hipocampo/fisiología , Estimulación Eléctrica , Corteza Cerebral , Electrodos Implantados , Estimulación Encefálica Profunda/métodos
8.
Front Neurosci ; 16: 945221, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36061593

RESUMEN

Introduction: Neurostimulation applied from deep brain stimulation (DBS) electrodes is an effective therapeutic intervention in patients suffering from intractable drug-resistant epilepsy when resective surgery is contraindicated or failed. Inhibitory DBS to suppress seizures and associated epileptogenic biomarkers could be performed with high-frequency stimulation (HFS), typically between 100 and 165 Hz, to various deep-seated targets, such as the Mesio-temporal lobe (MTL), which leads to changes in brain rhythms, specifically in the hippocampus. The most prominent alterations concern high-frequency oscillations (HFOs), namely an increase in ripples, a reduction in pathological Fast Ripples (FRs), and a decrease in pathological interictal epileptiform discharges (IEDs). Materials and methods: In the current study, we use Temporal Interference (TI) stimulation to provide a non-invasive DBS (130 Hz) of the MTL, specifically the hippocampus, in both mouse models of epilepsy, and scale the method using human cadavers to demonstrate the potential efficacy in human patients. Simulations for both mice and human heads were performed to calculate the best coordinates to reach the hippocampus. Results: This non-invasive DBS increases physiological ripples, and decreases the number of FRs and IEDs in a mouse model of epilepsy. Similarly, we show the inability of 130 Hz transcranial current stimulation (TCS) to achieve similar results. We therefore further demonstrate the translatability to human subjects via measurements of the TI stimulation vs. TCS in human cadavers. Results show a better penetration of TI fields into the human hippocampus as compared with TCS. Significance: These results constitute the first proof of the feasibility and efficiency of TI to stimulate at depth an area without impacting the surrounding tissue. The data tend to show the sufficiently focal character of the induced effects and suggest promising therapeutic applications in epilepsy.

9.
Nat Commun ; 12(1): 363, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441542

RESUMEN

Aberrant neural oscillations hallmark numerous brain disorders. Here, we first report a method to track the phase of neural oscillations in real-time via endpoint-corrected Hilbert transform (ecHT) that mitigates the characteristic Gibbs distortion. We then used ecHT to show that the aberrant neural oscillation that hallmarks essential tremor (ET) syndrome, the most common adult movement disorder, can be transiently suppressed via transcranial electrical stimulation of the cerebellum phase-locked to the tremor. The tremor suppression is sustained shortly after the end of the stimulation and can be phenomenologically predicted. Finally, we use feature-based statistical-learning and neurophysiological-modelling to show that the suppression of ET is mechanistically attributed to a disruption of the temporal coherence of the aberrant oscillations in the olivocerebellar loop, thus establishing its causal role. The suppression of aberrant neural oscillation via phase-locked driven disruption of temporal coherence may in the future represent a powerful neuromodulatory strategy to treat brain disorders.


Asunto(s)
Encéfalo/fisiopatología , Cerebelo/fisiopatología , Estimulación Encefálica Profunda/métodos , Temblor Esencial/terapia , Estimulación Transcraneal de Corriente Directa/métodos , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Temblor Esencial/diagnóstico , Temblor Esencial/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Neurológicos , Monitorización Neurofisiológica/métodos
10.
Commun Biol ; 4(1): 107, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33495588

RESUMEN

Respiratory insufficiency is a leading cause of death due to drug overdose or neuromuscular disease. We hypothesized that a stimulation paradigm using temporal interference (TI) could restore breathing in such conditions. Following opioid overdose in rats, two high frequency (5000 Hz and 5001 Hz), low amplitude waveforms delivered via intramuscular wires in the neck immediately activated the diaphragm and restored ventilation in phase with waveform offset (1 Hz or 60 breaths/min). Following cervical spinal cord injury (SCI), TI stimulation via dorsally placed epidural electrodes uni- or bilaterally activated the diaphragm depending on current and electrode position. In silico modeling indicated that an interferential signal in the ventral spinal cord predicted the evoked response (left versus right diaphragm) and current-ratio-based steering. We conclude that TI stimulation can activate spinal motor neurons after SCI and prevent fatal apnea during drug overdose by restoring ventilation with minimally invasive electrodes.


Asunto(s)
Apnea/prevención & control , Diafragma/fisiología , Terapia por Estimulación Eléctrica/métodos , Sobredosis de Opiáceos/complicaciones , Traumatismos de la Médula Espinal/complicaciones , Animales , Apnea/etiología , Femenino , Masculino , Modelos Biológicos , Ratas Sprague-Dawley
11.
Front Hum Neurosci ; 14: 196, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32670035

RESUMEN

Neural synchronization patterns are involved in several complex cognitive functions and constitute a growing trend in neuroscience research. While synchrony patterns in working memory have been extensively discussed, a complete understanding of their role in cognitive control and inhibition is still elusive. Here, we provide an up-to-date review on synchronization patterns underlying behavioral inhibition, extrapolating common grounds, and dissociating features with other inhibitory functions. Moreover, we suggest a schematic conceptual framework and highlight existing gaps in the literature, current methodological challenges, and compelling research questions for future studies.

14.
Int J Neural Syst ; 28(9): 1850006, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29631504

RESUMEN

OBJECTIVE: Vagus Nerve Stimulation (VNS) has shown great promise as a potential therapy for a number of conditions, such as epilepsy, depression and for Neurometabolic Therapies, especially for treating obesity. The objective of this study was to characterize the left ventral subdiaphragmatic gastric trunk of vagus nerve (SubDiaGVN) and to analyze the influence of intravenous injection of gut hormone cholecystokinin octapeptide (CCK-8) on compound nerve action potential (CNAP) observed on the same branch, with the aim of understanding the impact of hormones on VNS and incorporating the methods and results into closed loop implant design. METHODS: The cervical region of the left vagus nerve (CerVN) of male Wistar rats was stimulated with electric current and the elicited CNAPs were recorded on the SubDiaGVN under four different conditions: Control (no injection), Saline, CCK1 (100[Formula: see text]pmol/kg) and CCK2 (1000[Formula: see text]pmol/kg) injections. RESULTS: We identified the presence of A[Formula: see text], B, C1, C2, C3 and C4 fibers with their respective velocity ranges. Intravenous administration of CCK in vivo results in selective, statistically significant reduction of CNAP components originating from A and B fibers, but with no discernible effect on the C fibers in [Formula: see text] animals. The affected CNAP components exhibit statistically significant ([Formula: see text] and [Formula: see text]) higher normalized stimulation thresholds. CONCLUSION: This approach of characterizing the vagus nerve can be used in closed loop systems to determine when to initiate VNS and also to tune the stimulation dose, which is patient-specific and changes over time.


Asunto(s)
Potenciales de Acción/fisiología , Fármacos del Sistema Nervioso Periférico/farmacología , Sincalida/farmacología , Estimulación del Nervio Vago , Nervio Vago/efectos de los fármacos , Nervio Vago/metabolismo , Animales , Masculino , Ratas Wistar , Estómago/inervación
15.
Cell ; 169(6): 1029-1041.e16, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575667

RESUMEN

We report a noninvasive strategy for electrically stimulating neurons at depth. By delivering to the brain multiple electric fields at frequencies too high to recruit neural firing, but which differ by a frequency within the dynamic range of neural firing, we can electrically stimulate neurons throughout a region where interference between the multiple fields results in a prominent electric field envelope modulated at the difference frequency. We validated this temporal interference (TI) concept via modeling and physics experiments, and verified that neurons in the living mouse brain could follow the electric field envelope. We demonstrate the utility of TI stimulation by stimulating neurons in the hippocampus of living mice without recruiting neurons of the overlying cortex. Finally, we show that by altering the currents delivered to a set of immobile electrodes, we can steerably evoke different motor patterns in living mice.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Estimulación Transcraneal de Corriente Directa/métodos , Animales , Estimulación Encefálica Profunda/efectos adversos , Estimulación Encefálica Profunda/instrumentación , Electrodos , Hipocampo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Estimulación Transcraneal de Corriente Directa/efectos adversos , Estimulación Transcraneal de Corriente Directa/instrumentación
16.
Artículo en Inglés | MEDLINE | ID: mdl-24111090

RESUMEN

Optogenetics is a new neurotechnology innovation based on the creation of light sensitivity of neurons using gene technologies and remote light activation. Optogenetics allows for the first time straightforward targeted neural stimulation with practically no interference between multiple stimulation points since either light beam can be finely confined or the expression of light sensitive ion channels and pumps can be genetically targeted. Here we present a generalised computational modeling technique for various types of optogenetic mechanisms, which was implemented in the NEURON simulation environment. It was demonstrated on the example of a two classical mechanisms for cells optical activation and silencing: channelrhodopsin-2 (ChR2) and halorhodopsin (NpHR).We theoretically investigate the dynamics of the neural response of a layer 5 cortical pyramidal neuron (L5) to four different types of illuminations: 1) wide-field whole cell illumination 2) wide-field apical dendritic illumination 3) focal somatic illumination and 4) focal axon initial segment (AIS) illumination. We show that whole-cell illumination of halorhodopsin most effectively hyperpolarizes the neuron and is able to silence the cell even when driving input is present. However, when channelrhodopsin-2 and halorhodopsin are concurrently active, the relative location of each illumination determines whether the response is modulated with a balance towards depolarization. The methodology developed in this study will be significant to interpret and design optogenetic experiments and in the field of neuroengineering in general.


Asunto(s)
Simulación por Computador , Neuronas/citología , Neuronas/fisiología , Optogenética/métodos , Animales , Línea Celular , Channelrhodopsins , Halorrodopsinas/metabolismo , Canales Iónicos/metabolismo , Luz , Ratones , Estimulación Luminosa
17.
J Comput Neurosci ; 34(3): 477-88, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23179855

RESUMEN

Optogenetics offers an unprecedented ability to spatially target neuronal stimulations. This study investigated via simulation, for the first time, how the spatial pattern of excitation affects the response of channelrhodopsin-2 (ChR2) expressing neurons. First we described a methodology for modeling ChR2 in the NEURON simulation platform. Then, we compared four most commonly considered illumination strategies (somatic, dendritic, axonal and whole cell) in a paradigmatic model of a cortical layer V pyramidal cell. We show that the spatial pattern of illumination has an important impact on the efficiency of stimulation and the kinetics of the spiking output. Whole cell illumination synchronizes the depolarization of the dendritic tree and the soma and evokes spiking characteristics with a distinct pattern including an increased bursting rate and enhanced back propagation of action potentials (bAPs). This type of illumination is the most efficient as a given irradiance threshold was achievable with only 6 % of ChR2 density needed in the case of somatic illumination. Targeting only the axon initial segment requires a high ChR2 density to achieve a given threshold irradiance and a prolonged illumination does not yield sustained spiking. We also show that patterned illumination can be used to modulate the bAPs and hence spatially modulate the direction and amplitude of spike time dependent plasticity protocols. We further found the irradiance threshold to increase in proportion to the demyelination level of an axon, suggesting that measurements of the irradiance threshold (for example relative to the soma) could be used to remotely probe a loss of neural myelin sheath, which is a hallmark of several neurodegenerative diseases.


Asunto(s)
Potenciales de Acción/fisiología , Retroalimentación Fisiológica/fisiología , Luz , Modelos Neurológicos , Neuronas/fisiología , Optogenética , Potenciales de Acción/efectos de la radiación , Animales , Calcio/metabolismo , Channelrhodopsins , Neuronas/efectos de la radiación , Tiempo de Reacción/fisiología
18.
IEEE Trans Biomed Eng ; 58(6): 1742-51, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21324771

RESUMEN

Channelrhodopsin-2 (ChR2) has become a widely used tool for stimulating neurons with light. Nevertheless, the underlying dynamics of the ChR2-evoked spikes are still not yet fully understood. Here, we develop a model that describes the response of ChR2-expressing neurons to light stimuli and use the model to explore the light-to-spike process. We show that an optimal stimulation yield is achieved when the optical energies are delivered in short pulses. The model allows us to theoretically examine the effects of using various types of ChR2 mutants. We show that while increasing the lifetime and shuttering speed of ChR2 have limited effect, reducing the threshold irradiance by increased conductance will eliminate adaptation and allow constant dynamic range. The model and the conclusion presented in this study can help to interpret experimental results, design illumination protocols, and seek improvement strategies in the nascent optogenetic field.


Asunto(s)
Canales Iónicos/fisiología , Modelos Neurológicos , Neuronas/fisiología , Rodopsina/fisiología , Animales , Región CA3 Hipocampal/citología , Chlamydomonas reinhardtii , Potenciales Evocados/fisiología , Canales Iónicos/genética , Luz , Mutación , Conducción Nerviosa , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Ratas , Rodopsina/genética
19.
Phys Chem Chem Phys ; 13(12): 5271-8, 2011 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-21344100

RESUMEN

This paper describes a method for modifying self-assembled monolayers (SAMs) with the nitrilotriacetic acid (NTA) group for subsequent immobilization of hexahistidine tagged proteins. The method has two important improvements over previous ones; firstly it avoids the need to carry out a complex synthesis of the chelator alkanethiols prior to deposition because the reactions are performed in situ on a preassembled SAM. This in situ approach also avoids phase segregation of alkanethiols with different functional groups, especially bulky ones such as NTA and tri(ethylene glycol), since a simple SAM is employed as the starting material. The approach reported here uses mercaptohexadecanoic acid to form a well-ordered homogeneous carboxyl-terminated SAM on a gold surface. The carboxyl group was then condensed with an NTA derivative containing an amino group to form a peptide bond. The product is a surface that, after chelating Ni(2+) ions, binds histidine tagged proteins. The loading of NTA groups can be controlled by choice of reaction conditions thereby removing the need for a second alkanethiol to dilute the surface density of chelator groups and prevent molecular crowding. Both factors allow rapid attainment of optimal protein loading. Fluorescence imaging demonstrated that (His)(6) enhanced green fluorescent protein was reversibly immobilized and importantly, was functional on the surface. Furthermore, data from surface plasmon resonance, cyclic voltammetry and fluorescence spectrometry provided additional information on the specific and reversible immobilization of (His)(6) proteins on the NTA-modified SAM surface.


Asunto(s)
Quelantes/química , Proteínas Inmovilizadas/química , Resonancia por Plasmón de Superficie , Oro/química , Ácido Nitrilotriacético/química , Ácidos Palmíticos/química , Propiedades de Superficie
20.
J Neural Eng ; 7(1): 16004, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20075504

RESUMEN

Studying neuronal processes such as synaptic summation, dendritic physiology and neural network dynamics requires complex spatiotemporal control over neuronal activities. The recent development of neural photosensitization tools, such as channelrhodopsin-2 (ChR2), offers new opportunities for non-invasive, flexible and cell-specific neuronal stimulation. Previously, complex spatiotemporal control of photosensitized neurons has been limited by the lack of appropriate optical devices which can provide 2D stimulation with sufficient irradiance. Here we present a simple and powerful solution that is based on an array of high-power micro light-emitting diodes (micro-LEDs) that can generate arbitrary optical excitation patterns on a neuronal sample with micrometre and millisecond resolution. We first describe the design and fabrication of the system and characterize its capabilities. We then demonstrate its capacity to elicit precise electrophysiological responses in cultured and slice neurons expressing ChR2.


Asunto(s)
Neuronas/fisiología , Dispositivos Ópticos , Óptica y Fotónica/instrumentación , Óptica y Fotónica/métodos , Rodopsina/metabolismo , Potenciales de Acción , Animales , Células Cultivadas , Dendritas/fisiología , Diseño de Equipo , Hipocampo/fisiología , Técnicas In Vitro , Luz , Ratones , Ratones Noqueados , Estimulación Luminosa , Ratas , Retina/fisiología , Rodopsina/genética , Factores de Tiempo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...