Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Pept Sci ; 27(7): e3327, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33825251

RESUMEN

Peptide-mediated membrane fusion is frequently studied with in vitro bulk leaflet mixing assays based on Förster resonance energy transfer (FRET). In these, customized liposomes with fusogenic peptides are equipped with lipids which are labeled with fluorophores that form a FRET pair. Since FRET is dependent on distance and membrane fusion comes along with lipid mixing, the assays allow for conclusions on the membrane fusion process. The experimental outcome of these assays, however, greatly depends on the applied parameters. In the present study, the influence of the peptides, the size of liposomes, their lipid composition and the liposome stoichiometry on the fusogenicity of liposomes are evaluated. As fusogenic peptides, soluble N-ethylmaleimide-sensitive-factor attachment receptor (SNARE) protein analogues featuring artificial recognition units attached to the native SNARE transmembrane domains are used. The work shows that it is important to control these parameters in order to be able to properly investigate the fusion process and to prevent undesired effects of aggregation.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Péptidos/química , Proteínas SNARE/química , Péptidos/síntesis química
2.
Chem Sci ; 9(18): 4308-4316, 2018 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-29780562

RESUMEN

Among the protein folding motifs, which are accessible by de novo design, the parallel heterodimeric coiled coil is most frequently used in bioinspired applications and chemical biology in general. This is due to the straightforward sequence-to-structure relationships, which it has in common with all coiled-coil motifs, and the heterospecificity, which allows control of association. Whereas much focus was laid on designing orthogonal coiled coils, systematic studies on controlling association, for instance by strand displacement, are rare. As a contribution to the design of dynamic coiled-coil-based systems, we studied the strand-displacement mechanism in obligate heterodimeric coiled coils to investigate the suitability of the dissociation constants (KD) as parameters for the prediction of the outcome of strand-displacement reactions. We use two sets of heterodimeric coiled coils, the previously reported N-A x B y and the newly characterized C-A x B y . Both comprise KD values in the µM to sub-nM regime. Strand displacement is explored by CD titration and a FRET-based kinetic assay and is proved to be an equilibrium reaction with half-lifes from a few seconds up to minutes. We could fit the displacement data by a competitive binding model, giving rate constants and overall affinities of the underlying association and dissociation reactions. The overall affinities correlate well with the ratios of KD values determined by CD-thermal denaturation experiments and, hence, support the dissociative mechanism of strand displacement in heterodimeric coiled coils. From the results of more than 100 different displacement reactions we are able to classify three categories of overall affinities, which allow for easy prediction of the equilibrium of strand displacement in two competing heterodimeric coiled coils.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA