Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(11): e2316439121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38442165

RESUMEN

Adaptive myelination is the emerging concept of tuning axonal conduction velocity to the activity within specific neural circuits over time. Sound processing circuits exhibit structural and functional specifications to process signals with microsecond precision: a time scale that is amenable to adjustment in length and thickness of myelin. Increasing activity of auditory axons by introducing sound-evoked responses during postnatal development enhances myelin thickness, while sensory deprivation prevents such radial growth during development. When deprivation occurs during adulthood, myelin thickness was reduced. However, it is unclear whether sensory stimulation adjusts myelination in a global fashion (whole fiber bundles) or whether such adaptation occurs at the level of individual fibers. Using temporary monaural deprivation in mice provided an internal control for a) differentially tracing structural changes in active and deprived fibers and b) for monitoring neural activity in response to acoustic stimulation of the control and the deprived ear within the same animal. The data show that sound-evoked activity increased the number of myelin layers around individual active axons, even when located in mixed bundles of active and deprived fibers. Thicker myelination correlated with faster axonal conduction velocity and caused shorter auditory brainstem response wave VI-I delays, providing a physiologically relevant readout. The lack of global compensation emphasizes the importance of balanced sensory experience in both ears throughout the lifespan of an individual.


Asunto(s)
Axones , Vaina de Mielina , Animales , Ratones , Privación Sensorial , Estimulación Acústica , Longevidad
2.
Glia ; 72(4): 794-808, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38174817

RESUMEN

Axons of globular bushy cells in the cochlear nucleus convey hyper-accurate signals to the superior olivary complex, the initial site of binaural processing via comparably thick axons and the calyx of the Held synapse. Bushy cell fibers involved in hyper-accurate binaural processing of low-frequency sounds are known to have an unusual internode length-to-axon caliber ratio (L/d) correlating with higher conduction velocity and superior temporal precision of action potentials. How the L/d-ratio develops and what determines this unusual myelination pattern is unclear. Here we describe a gradual developmental transition from very simple to complex, mature nodes of Ranvier on globular bushy cell axons during a 2-week period starting at postnatal day P6/7. The molecular composition of nodes matured successively along the axons from somata to synaptic terminals with morphologically and molecularly mature nodes appearing almost exclusively after hearing onset. Internodal distances are initially coherent with the canonical L/d-ratio of ~100. Several days after hearing onset, however, an over-proportional increase in axon caliber occurs in cells signaling low-frequency sounds which alters their L/d ratio to ~60. Hence, oligodendrocytes initially myelinating axons according to their transient axon caliber but a subsequent differential axon thickening after hearing onset results in the unusual myelination pattern.


Asunto(s)
Axones , Neuronas , Potenciales de Acción/fisiología , Axones/fisiología , Terminales Presinápticos , Oligodendroglía , Vaina de Mielina/fisiología
3.
Front Integr Neurosci ; 16: 892951, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35662831

RESUMEN

Our perception is based on active sensing, i.e., the relationship between self-motion and resulting changes to sensory inputs. Yet, traditional experimental paradigms are characterized by delayed reactions to a predetermined stimulus sequence. To increase the engagement of subjects and potentially provide richer behavioral responses, we developed Sensory Island Task for humans (SITh), a freely-moving search paradigm to study auditory perception. In SITh, subjects navigate an arena in search of an auditory target, relying solely on changes in the presented stimulus frequency, which is controlled by closed-loop position tracking. A "target frequency" was played when subjects entered a circular sub-area of the arena, the "island", while different frequencies were presented outside the island. Island locations were randomized across trials, making stimulus frequency the only informative cue for task completion. Two versions of SITh were studied: binary discrimination, and gradual change of the stimulus frequency. The latter version allowed determining frequency discrimination thresholds based on the subjects' report of the perceived island location (i.e., target frequency). Surprisingly, subjects exhibited similar thresholds as reported in traditional "stationary" forced-choice experiments after performing only 30 trials, highlighting the intuitive nature of SITh. Notably, subjects spontaneously employed a small variety of stereotypical search patterns, and their usage proportions varied between task versions. Moreover, frequency discrimination performance depended on the search pattern used. Overall, we demonstrate that the use of an ecologically driven paradigm is able to reproduce established findings while simultaneously providing rich behavioral data for the description of sensory ethology.

4.
Biology (Basel) ; 10(11)2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34827092

RESUMEN

Birdsong is a precisely timed animal behavior. The connectivity of song premotor neural networks has been proposed to underlie the temporal patterns of neuronal activity that control vocal muscle movements during singing. Although the connectivity of premotor nuclei via chemical synapses has been characterized, electrical synapses and their molecular identity remain unexplored. We show with in situ hybridizations that GJD2 mRNA, coding for the major channel-forming electrical synapse protein in mammals, connexin 36, is expressed in the two nuclei that control song production, HVC and RA from canaries and zebra finches. In canaries' HVC, GJD2 mRNA is extensively expressed in GABAergic and only a fraction of glutamatergic cells. By contrast, in RA, GJD2 mRNA expression is widespread in glutamatergic and GABAergic neurons. Remarkably, GJD2 expression is similar in song nuclei and their respective embedding brain regions, revealing the widespread expression of GJD2 in the avian brain. Inspection of a single-cell sequencing database from zebra and Bengalese finches generalizes the distributions of electrical synapses across cell types and song nuclei that we found in HVC and RA from canaries, reveals a differential GJD2 mRNA expression in HVC glutamatergic subtypes and its transient increase along the neurogenic lineage. We propose that songbirds are a suitable model to investigate the contribution of electrical synapses to motor skill learning and production.

5.
J Neurophysiol ; 126(5): 1660-1669, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34644166

RESUMEN

Studies of in vivo neuronal responses to auditory inputs in the superior olive complex (SOC) are usually done under anesthesia. However, little attention has been paid to the effect of anesthesia itself on response properties. Here, we assessed the effect of anesthesia depth under ketamine-xylazine anesthetics on auditory evoked response properties of lateral SOC neurons. Anesthesia depth was tracked by monitoring EEG spectral peak frequencies. An increase in anesthesia depth led to a decrease of spontaneous discharge activities and an elevated response threshold. The temporal responses to suprathreshold tones were also affected, with adapted responses reduced but peak responses unaffected. Deepening the anesthesia depth also increased first spike latency. However, spike jitter was not affected. Auditory brainstem responses to clicks confirmed that ketamine-xylazine anesthesia depth affects auditory neuronal activities and the effect on spike rate and spike timing persists through the auditory pathway. We concluded from those observations that ketamine-xylazine affects lateral SOC response properties depending on the anesthesia depth.NEW & NOTEWORTHY We studied how the depth of ketamine-xylazine anesthesia altered response properties of lateral superior olive complex neurons, and auditory brainstem evoked responses. Our results provide direct evidence that anesthesia depth affects auditory neuronal responses and reinforce the notion that both the anesthetics and the anesthesia depth should be considered when interpreting/comparing in vivo neuronal recordings.


Asunto(s)
Anestesia , Anestésicos Generales/farmacología , Percepción Auditiva/efectos de los fármacos , Ketamina/farmacología , Complejo Olivar Superior/efectos de los fármacos , Xilazina/farmacología , Animales , Electroencefalografía/efectos de los fármacos , Potenciales Evocados Auditivos del Tronco Encefálico/efectos de los fármacos , Femenino , Gerbillinae , Masculino
6.
Curr Biol ; 31(17): 3875-3883.e5, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34192513

RESUMEN

Information about the position of sensory objects and identifying their concurrent behavioral relevance is vital to navigate the environment. In the auditory system, spatial information is computed in the brain based on the position of the sound source relative to the observer and thus assumed to be egocentric throughout the auditory pathway. This assumption is largely based on studies conducted in either anesthetized or head-fixed and passively listening animals, thus lacking self-motion and selective listening. Yet these factors are fundamental components of natural sensing1 that may crucially impact the nature of spatial coding and sensory object representation.2 How individual objects are neuronally represented during unrestricted self-motion and active sensing remains mostly unexplored. Here, we trained gerbils on a behavioral foraging paradigm that required localization and identification of sound sources during free navigation. Chronic tetrode recordings in primary auditory cortex during task performance revealed previously unreported sensory object representations. Strikingly, the egocentric angle preference of the majority of spatially sensitive neurons changed significantly depending on the task-specific identity (outcome association) of the sound source. Spatial tuning also exhibited large temporal complexity. Moreover, we encountered egocentrically untuned neurons whose response magnitude differed between source identities. Using a neural network decoder, we show that, together, these neuronal response ensembles provide spatiotemporally co-existent information about both the egocentric location and the identity of individual sensory objects during self-motion, revealing a novel cortical computation principle for naturalistic sensing.


Asunto(s)
Corteza Auditiva , Localización de Sonidos , Estimulación Acústica , Animales , Corteza Auditiva/fisiología , Vías Auditivas , Percepción Auditiva/fisiología , Localización de Sonidos/fisiología
7.
Sci Rep ; 11(1): 5139, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33664302

RESUMEN

To counterbalance long-term environmental changes, neuronal circuits adapt the processing of sensory information. In the auditory system, ongoing background noise drives long-lasting adaptive mechanism in binaural coincidence detector neurons in the superior olive. However, the compensatory cellular mechanisms of the binaural neurons in the medial superior olive (MSO) to long-term background changes are unexplored. Here we investigated the cellular properties of MSO neurons during long-lasting adaptations induced by moderate omnidirectional noise exposure. After noise exposure, the input resistance of MSO neurons of mature Mongolian gerbils was reduced, likely due to an upregulation of hyperpolarisation-activated cation and low voltage-activated potassium currents. Functionally, the long-lasting adaptations increased the action potential current threshold and facilitated high frequency output generation. Noise exposure accelerated the occurrence of spontaneous postsynaptic currents. Together, our data suggest that cellular adaptations in coincidence detector neurons of the MSO to continuous noise exposure likely increase the sensitivity to differences in sound pressure levels.


Asunto(s)
Adaptación Fisiológica/fisiología , Vías Auditivas/fisiología , Tronco Encefálico/fisiología , Neuronas/fisiología , Estimulación Acústica , Potenciales de Acción/fisiología , Animales , Gerbillinae/fisiología , Ruido/efectos adversos , Complejo Olivar Superior/fisiología
8.
Glia ; 69(2): 346-361, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32809228

RESUMEN

Astrocyte heterogeneity is increasingly recognized, but still little is known about juxtavascular astrocytes with their somata directly adjacent to blood vessels, despite their importance after brain injury. As juxtavascular astrocytes originate from common progenitor cells, that is, have a clonal origin, they may intrinsically differ from other, non-juxtavascular astrocytes. To explore this, we examined the electrophysiological properties of these groups of astrocytes and the underlying ion channels. Using brain slices of BAC Aldh1l1-eGFP transgenic mice with astrocytes labeled by GFP expression, we compared juxtavascular and non-juxtavascular astrocytes in the somatosensory cortex by means of whole-cell patch-clamp recordings and immunohistochemical staining. Prior to injury, juxta- and non-juxtavascular astrocytes exhibit comparable electrophysiological properties with characteristic mostly passive conductance and a typical negative resting membrane potential. Immunohistochemical analysis of K+ channels showed that all astrocytes were Kir 4.1+ , but revealed an intriguing difference for Kv 4.3. The expression of Kv 4.3 in sibling astrocytes (non-juxtavascular, juxtavascular and pial) was dependent on their ontogenetic origin with lowest levels in juxtavascular astrocytes located in upper cortical layers. After traumatic brain injury (TBI), we found profound changes in the electrophysiological type of astrocytes with a predominance of non-passive properties and this pattern was significantly enriched in juxtavascular astrocytes. This was accompanied by pronounced down-regulation of Kir 4.1 in proliferating astrocytes, which was significantly more in juxtavascular compared to non-juxtavascular astrocytes. Taken together, TBI induces profound differences in electrophysiological properties between juxtavascular and non-juxtavascular astrocytes that might be related to the preponderance of juxtavascular astrocyte proliferation.


Asunto(s)
Astrocitos , Lesiones Encefálicas , Animales , Potenciales de la Membrana , Ratones , Ratones Transgénicos , Técnicas de Placa-Clamp
9.
Front Behav Neurosci ; 14: 576154, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33100981

RESUMEN

A central function of sensory systems is the gathering of information about dynamic interactions with the environment during self-motion. To determine whether modulation of a sensory cue was externally caused or a result of self-motion is fundamental to perceptual invariance and requires the continuous update of sensory processing about recent movements. This process is highly context-dependent and crucial for perceptual performances such as decision-making and sensory object formation. Yet despite its fundamental ecological role, voluntary self-motion is rarely incorporated in perceptual or neurophysiological investigations of sensory processing in animals. Here, we present the Sensory Island Task (SIT), a new freely moving search paradigm to study sensory processing and perception. In SIT, animals explore an open-field arena to find a sensory target relying solely on changes in the presented stimulus, which is controlled by closed-loop position tracking in real-time. Within a few sessions, animals are trained via positive reinforcement to search for a particular area in the arena ("target island"), which triggers the presentation of the target stimulus. The location of the target island is randomized across trials, making the modulated stimulus feature the only informative cue for task completion. Animals report detection of the target stimulus by remaining within the island for a defined time ("sit-time"). Multiple "non-target" islands can be incorporated to test psychometric discrimination and identification performance. We exemplify the suitability of SIT for rodents (Mongolian gerbil, Meriones unguiculatus) and small primates (mouse lemur, Microcebus murinus) and for studying various sensory perceptual performances (auditory frequency discrimination, sound source localization, visual orientation discrimination). Furthermore, we show that pairing SIT with chronic electrophysiological recordings allows revealing neuronal signatures of sensory processing under ecologically relevant conditions during goal-oriented behavior. In conclusion, SIT represents a flexible and easily implementable behavioral paradigm for mammals that combines self-motion and natural exploratory behavior to study sensory sensitivity and decision-making and their underlying neuronal processing.

10.
J Neurophysiol ; 124(2): 471-483, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32667247

RESUMEN

Neural circuits require balanced synaptic excitation and inhibition to ensure accurate neural computation. Our knowledge about the development and maturation of inhibitory synaptic inputs is less well developed than that concerning excitation. Here we describe the maturation of an inhibitory circuit within the mammalian auditory brainstem where counterintuitively, inhibition drives action potential firing of principal neurons. With the use of combined anatomical tracing and electrophysiological recordings from mice, neurons of the superior paraolivary nucleus (SPN) are shown to receive converging glycinergic input from at least four neurons of the medial nucleus of the trapezoid body (MNTB). These four axons formed 30.71 ± 2.72 (means ± SE) synaptic boutons onto each SPN neuronal soma, generating a total inhibitory conductance of 80 nS. Such strong inhibition drives the underlying postinhibitory rebound firing mechanism, which is a hallmark of SPN physiology. In contrast to inhibitory projections to the medial and lateral superior olives, the inhibitory projection to the SPN does not exhibit experience-dependent synaptic refinement following the onset of hearing. These findings emphasize that the development and function of neural circuits cannot be inferred from one synaptic target to another, even if both originate from the same neuron.NEW & NOTEWORTHY Neuronal activity regulates development and maturation of neural circuits. This activity can include spontaneous burst firing or firing elicited by sensory input during early development. For example, auditory brainstem circuits involved in sound localization require acoustically evoked activity to form properly. Here we show, that an inhibitory circuit, involved in processing sound offsets, gaps, and rhythmically modulated vocal communication signals, matures before the onset of acoustically evoked activity.


Asunto(s)
Vías Auditivas/fisiología , Percepción Auditiva/fisiología , Red Nerviosa/fisiología , Inhibición Neural/fisiología , Neuronas/fisiología , Complejo Olivar Superior/fisiología , Cuerpo Trapezoide/fisiología , Potenciales de Acción/fisiología , Animales , Masculino , Ratones , Red Nerviosa/crecimiento & desarrollo , Técnicas de Trazados de Vías Neuroanatómicas , Técnicas de Placa-Clamp , Complejo Olivar Superior/citología , Cuerpo Trapezoide/citología
11.
BMC Genomics ; 20(1): 903, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31775624

RESUMEN

BACKGROUND: The Mongolian gerbil (Meriones unguiculatus) has historically been used as a model organism for the auditory and visual systems, stroke/ischemia, epilepsy and aging related research since 1935 when laboratory gerbils were separated from their wild counterparts. In this study we report genome sequencing, assembly, and annotation further supported by transcriptome sequencing and assembly from 27 different tissues samples. RESULTS: The genome was sequenced using Illumina HiSeq 2000 and after assembly resulted in a final genome size of 2.54 Gbp with contig and scaffold N50 values of 31.4 Kbp and 500.0 Kbp, respectively. Based on the k-mer estimated genome size of 2.48 Gbp, the assembly appears to be complete. The genome annotation was supported by transcriptome data that identified 31,769 (> 2000 bp) predicted protein-coding genes across 27 tissue samples. A BUSCO search of 3023 mammalian groups resulted in 86% of curated single copy orthologs present among predicted genes, indicating a high level of completeness of the genome. CONCLUSIONS: We report the first de novo assembly of the Mongolian gerbil genome enhanced by assembly of transcriptome data from several tissues. Sequencing of this genome and transcriptome increases the utility of the gerbil as a model organism, opening the availability of now widely used genetic tools.


Asunto(s)
Biología Computacional , Genoma , Genómica , Gerbillinae/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Transcriptoma , Animales , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Genómica/métodos , Anotación de Secuencia Molecular , Especificidad de Órganos
12.
PLoS Biol ; 17(7): e3000150, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31356637

RESUMEN

Our sensory environment changes constantly. Accordingly, neural systems continually adapt to the concurrent stimulus statistics to remain sensitive over a wide range of conditions. Such dynamic range adaptation (DRA) is assumed to increase both the effectiveness of the neuronal code and perceptual sensitivity. However, direct demonstrations of DRA-based efficient neuronal processing that also produces perceptual benefits are lacking. Here, we investigated the impact of DRA on spatial coding in the rodent brain and the perception of human listeners. Complex spatial stimulation with dynamically changing source locations elicited prominent DRA already on the initial spatial processing stage, the Lateral Superior Olive (LSO) of gerbils. Surprisingly, on the level of individual neurons, DRA diminished spatial tuning because of large response variability across trials. However, when considering single-trial population averages of multiple neurons, DRA enhanced the coding efficiency specifically for the concurrently most probable source locations. Intrinsic LSO population imaging of energy consumption combined with pharmacology revealed that a slow-acting LSO gain-control mechanism distributes activity across a group of neurons during DRA, thereby enhancing population coding efficiency. Strikingly, such "efficient cooperative coding" also improved neuronal source separability specifically for the locations that were most likely to occur. These location-specific enhancements in neuronal coding were paralleled by human listeners exhibiting a selective improvement in spatial resolution. We conclude that, contrary to canonical models of sensory encoding, the primary motive of early spatial processing is efficiency optimization of neural populations for enhanced source separability in the concurrent environment.


Asunto(s)
Adaptación Fisiológica/fisiología , Percepción Auditiva/fisiología , Vías Nerviosas/fisiología , Neuronas/fisiología , Localización de Sonidos/fisiología , Sonido , Estimulación Acústica/métodos , Algoritmos , Animales , Gerbillinae , Humanos , Modelos Neurológicos , Neuronas/citología , Núcleo Olivar/fisiología
13.
eNeuro ; 6(3)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31152098

RESUMEN

In neural circuits, action potentials (spikes) are conventionally caused by excitatory inputs whereas inhibitory inputs reduce or modulate neuronal excitability. We previously showed that neurons in the superior paraolivary nucleus (SPN) require solely synaptic inhibition to generate their hallmark offset response, a burst of spikes at the end of a sound stimulus, via a post-inhibitory rebound mechanism. In addition SPN neurons receive excitatory inputs, but their functional significance is not yet known. Here we used mice of both sexes to demonstrate that in SPN neurons, the classical roles for excitation and inhibition are switched, with inhibitory inputs driving spike firing and excitatory inputs modulating this response. Hodgkin-Huxley modeling suggests that a slow, NMDA receptor (NMDAR)-mediated excitation would accelerate the offset response. We find corroborating evidence from in vitro and in vivo recordings that lack of excitation prolonged offset-response latencies and rendered them more variable to changing sound intensity levels. Our results reveal an unsuspected function for slow excitation in improving the timing of post-inhibitory rebound firing even when the firing itself does not depend on excitation. This shows the auditory system employs highly specialized mechanisms to encode timing-sensitive features of sound offsets which are crucial for sound-duration encoding and have profound biological importance for encoding the temporal structure of speech.


Asunto(s)
Potenciales de Acción/fisiología , Percepción Auditiva/fisiología , Potenciales Postsinápticos Excitadores , Potenciales Postsinápticos Inhibidores , Neuronas/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Complejo Olivar Superior/fisiología , Estimulación Acústica , Animales , Femenino , Masculino , Ratones Endogámicos C57BL
14.
Artículo en Inglés | MEDLINE | ID: mdl-30814933

RESUMEN

In natural environments our auditory system is exposed to multiple and diverse signals of fluctuating amplitudes. Therefore, to detect, localize, and single out individual sounds the auditory system has to process and filter spectral and temporal information from both ears. It is known that the overall sound pressure level affects sensory signal transduction and therefore the temporal response pattern of auditory neurons. We hypothesize that the mammalian binaural system utilizes a dynamic mechanism to adjust the temporal filters in neuronal circuits to different overall sound pressure levels. Previous studies proposed an inhibitory mechanism generated by the reciprocally coupled dorsal nuclei of the lateral lemniscus (DNLL) as a temporal neuronal-network filter that suppresses rapid binaural fluctuations. Here we investigated the consequence of different sound levels on this filter during binaural processing. Our in vivo and in vitro electrophysiology in Mongolian gerbils shows that the integration of ascending excitation and contralateral inhibition defines the temporal properties of this inhibitory filter. The time course of this filter depends on the synaptic drive, which is modulated by the overall sound pressure level and N-methyl-D-aspartate receptor (NMDAR) signaling. In psychophysical experiments we tested the temporal perception of humans and show that detection and localization of two subsequent tones changes with the sound pressure level consistent with our physiological results. Together our data support the hypothesis that mammals dynamically adjust their time window for sound detection and localization within the binaural system in a sound level dependent manner.


Asunto(s)
Audición/fisiología , Localización de Sonidos/fisiología , Sonido , 2-Amino-5-fosfonovalerato/farmacología , Estimulación Acústica , Potenciales de Acción/efectos de los fármacos , Animales , Vías Auditivas/fisiología , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Gerbillinae , Colículos Inferiores/fisiología , Masculino , Inhibición Neural , Neuronas/efectos de los fármacos , Psicofísica , Quinoxalinas/farmacología , Factores de Tiempo
15.
J Physiol ; 596(21): 5281-5298, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30206945

RESUMEN

KEY POINTS: Although the visual circuits in the superior colliculus (SC) have been thoroughly examined, the auditory circuits lack equivalent scrutiny. SC neurons receiving auditory inputs in mice were characterized and three distinguishable types of neurons were found. The auditory pathways from external nuclei of the inferior colliculus (IC) were characterized, and a novel direct inhibitory connection and an excitation that drives feed-forward inhibitory circuits within the SC were found. The direct excitatory and inhibitory inputs exhibited distinct arbourization patterns in the SC. These findings suggest functional differences between excitatory and inhibitory sensory information that targets the auditory SC. ABSTRACT: The superior colliculus (SC) is a midbrain structure that integrates auditory, somatosensory and visual inputs to drive orientation movements. While much is known about how visual information is processed in the superficial layers of the SC, little is known about the SC circuits in the deep layers that process auditory inputs. We therefore characterized intrinsic neuronal properties in the auditory-recipient layer of the SC (stratum griseum profundum; SGP) and confirmed three electrophysiologically defined clusters of neurons, consistent with literature from other SC layers. To determine the types of inputs to the SGP, we expressed Channelrhodopsin-2 in the nucleus of the brachium of the inferior colliculus (nBIC) and external cortex of the inferior colliculus (ECIC) and optically stimulated these pathways while recording from SGP neurons. Probing the connections in this manner, we described a monosynaptic excitation that additionally drives feed-forward inhibition via circuits intrinsic to the SC. Moreover, we found a profound long-range monosynaptic inhibition in 100% of recorded SGP neurons, a surprising finding considering that only about 15% of SGP-projecting neurons in the nBIC/ECIC are inhibitory. Furthermore, we found spatial differences in the cell body locations as well as axon trajectories between the monosynaptic excitatory and inhibitory inputs, suggesting that these inputs may be functionally distinct. Taking this together with recent anatomical evidence suggesting an auditory excitation from the nBIC and a GABAergic multimodal inhibition from the ECIC, we propose that sensory integration in the SGP is more multifaceted than previously thought.


Asunto(s)
Percepción Auditiva , Potenciales Postsinápticos Inhibidores , Colículos Superiores/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Colículos Superiores/citología
16.
Cell Stem Cell ; 22(6): 865-878.e8, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29779889

RESUMEN

One hallmark of adult neurogenesis is its adaptability to environmental influences. Here, we uncovered the epithelial sodium channel (ENaC) as a key regulator of adult neurogenesis as its deletion in neural stem cells (NSCs) and their progeny in the murine subependymal zone (SEZ) strongly impairs their proliferation and neurogenic output in the olfactory bulb. Importantly, alteration of fluid flow promotes proliferation of SEZ cells in an ENaC-dependent manner, eliciting sodium and calcium signals that regulate proliferation via calcium-release-activated channels and phosphorylation of ERK. Flow-induced calcium signals are restricted to NSCs in contact with the ventricular fluid, thereby providing a highly specific mechanism to regulate NSC behavior at this special interface with the cerebrospinal fluid. Thus, ENaC plays a central role in regulating adult neurogenesis, and among multiple modes of ENaC function, flow-induced changes in sodium signals are critical for NSC biology.


Asunto(s)
Canales Epiteliales de Sodio/metabolismo , Líquido Extracelular/metabolismo , Células-Madre Neurales/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Líquido Extracelular/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células-Madre Neurales/citología
17.
Front Cell Neurosci ; 12: 111, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29740286

RESUMEN

The Mongolian gerbil (Meriones unguiculatus) is widely used as a model organism for the human auditory system. Its hearing range is very similar to ours and it uses the same mechanisms for sound localization. The auditory circuits underlying these functions have been characterized. However, important mechanistic details are still under debate. To elucidate these issues, precise and reversible optogenetic manipulation of neuronal activity in this complex circuitry is required. However, genetic and genomic resources for the Mongolian gerbil are poorly developed. Here, we demonstrate a reliable gene delivery system using an AAV8(Y337F)-pseudotyped recombinant adeno-associated virus (AAV) 2-based vector in which the pan-neural human synapsin (hSyn) promoter drives neuron-specific expression of CatCH (Ca2+-permeable channelrhodopsin) or NpHR3.0 (Natronomonas pharaonis halorhodopsin). After stereotactic injection into the gerbil's auditory brainstem (medial nucleus of the trapezoid body, dorsal nucleus of the lateral lemniscus) and midbrain [inferior colliculus (IC)], we characterized CatCH- and/or NpHR3.0-transduced neurons in acute brain slices by means of whole-cell patch-clamp recordings. As the response properties of optogenetic tools strongly depend on neuronal biophysics, this parameterization is crucial for their in vivo application. In a proof-of-principle experiment in anesthetized gerbils, we observed strong suppression of sound-evoked neural responses in the dorsal nucleus of the lateral lemniscus (DNLL) and IC upon light activation of NpHR3.0. The successful validation of gene delivery and optogenetic tools in the Mongolian gerbil paves the way for future studies of the auditory circuits in this model system.

18.
Nat Commun ; 9(1): 1771, 2018 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-29720589

RESUMEN

The integration of excitatory and inhibitory synaptic inputs is fundamental to neuronal processing. In the mammalian auditory brainstem, neurons compare excitatory and inhibitory inputs from the ipsilateral and contralateral ear, respectively, for sound localization. However, the temporal precision and functional roles of inhibition in this integration process are unclear. Here, we demonstrate by in vivo recordings from the lateral superior olive (LSO) that inhibition controls spiking with microsecond precision throughout high frequency click trains. Depending on the relative timing of excitation and inhibition, neuronal spike probability is either suppressed or-unexpectedly-facilitated. In vitro conductance-clamp LSO recordings establish that a reduction in the voltage threshold for spike initiation due to a prior hyperpolarization results in post-inhibitory facilitation of otherwise sub-threshold synaptic events. Thus, microsecond-precise differences in the arrival of inhibition relative to excitation can facilitate spiking in the LSO, thereby promoting spatial sensitivity during the processing of faint sounds.


Asunto(s)
Potenciales de Acción/fisiología , Vías Auditivas/fisiología , Tronco Encefálico/fisiología , Complejo Olivar Superior/fisiología , Estimulación Acústica , Algoritmos , Animales , Tronco Encefálico/citología , Gerbillinae , Modelos Neurológicos , Inhibición Neural/fisiología , Neuronas/fisiología , Localización de Sonidos/fisiología , Complejo Olivar Superior/citología , Transmisión Sináptica/fisiología , Factores de Tiempo
19.
Trends Neurosci ; 41(3): 115-117, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29499770

RESUMEN

In a series of seminal behavioral and electrophysiological experiments, Knudsen and Konishi studied the mechanisms of hearing. Their 1979 article showed how the barn owl utilizes unique anatomical features for creating a systematic internal representation of auditory space. This established the barn owl as a prime model for studying sensory systems.


Asunto(s)
Vías Auditivas/fisiología , Percepción Auditiva/fisiología , Audición/fisiología , Estrigiformes/fisiología , Estimulación Acústica/métodos , Animales , Humanos , Neuronas/fisiología
20.
Eur J Neurosci ; 47(7): 858-865, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29405453

RESUMEN

In sensory systems, the neuronal representation of external stimuli is enhanced along the sensory pathway. In the auditory system, strong enhancement of binaural information takes place between the brainstem and the midbrain; however, the underlying cellular mechanisms are unknown. Here we investigated the transformation of binaural information in the dorsal nucleus of the lateral lemniscus (DNLL), a nucleus that connects the binaural nuclei in the brainstem and the inferior colliculus in the midbrain. We used in vitro and in vivo electrophysiology in adult Mongolian gerbils to show that N-methyl-D-aspartate receptor (NMDARs) play a critical role in neuronal encoding of stimulus properties in the DNLL. While NMDARs increase firing rates, the timing and the accuracy of the neuronal responses remain unchanged. NMDAR-mediated excitation increases the information about the acoustic stimulus. Taken together, our results show that NMDARs in the DNLL enhance the auditory information content in adult mammal brainstem.


Asunto(s)
Tronco Encefálico/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , 2-Amino-5-fosfonovalerato/análogos & derivados , 2-Amino-5-fosfonovalerato/farmacología , Estimulación Acústica , Potenciales de Acción/fisiología , Animales , Vías Auditivas/fisiología , Femenino , Gerbillinae , Masculino , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...