Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
J Alzheimers Dis ; 99(1): 145-159, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38640150

RESUMEN

Background: Degeneration of cholinergic basal forebrain (BF) neurons characterizes Alzheimer's disease (AD). However, what role the BF plays in the dynamics of AD pathophysiology has not been investigated precisely. Objective: To investigate the baseline and longitudinal roles of BF along with core neuropathologies in AD. Methods: In this retrospective cohort study, we enrolled 113 subjects (38 amyloid [Aß]-negative cognitively unimpaired, 6 Aß-positive cognitively unimpaired, 39 with prodromal AD, and 30 with AD dementia) who performed brain MRI for BF volume and cortical thickness, 18F-florbetaben PET for Aß, 18F-flortaucipir PET for tau, and detailed cognitive testing longitudinally. We investigated the baseline and longitudinal association of BF volume with Aß and tau standardized uptake value ratio and cognition. Results: Cross-sectionally, lower BF volume was not independently associated with higher cortical Aß, but it was associated with tau burden. Tau burden in the orbitofrontal, insular, lateral temporal, inferior temporo-occipital, and anterior cingulate cortices were associated with progressive BF atrophy. Lower BF volume was associated with faster Aß accumulation, mainly in the prefrontal, anterior temporal, cingulate, and medial occipital cortices. BF volume was associated with progressive decline in language and memory functions regardless of baseline Aß and tau burden. Conclusions: Tau deposition affected progressive BF atrophy, which in turn accelerated amyloid deposition, leading to a vicious cycle. Also, lower baseline BF volume independently predicted deterioration in cognitive function.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Prosencéfalo Basal , Cognición , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Proteínas tau , Humanos , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Masculino , Femenino , Anciano , Proteínas tau/metabolismo , Prosencéfalo Basal/patología , Prosencéfalo Basal/metabolismo , Prosencéfalo Basal/diagnóstico por imagen , Péptidos beta-Amiloides/metabolismo , Estudios Retrospectivos , Cognición/fisiología , Estudios Transversales , Anciano de 80 o más Años , Estudios Longitudinales , Persona de Mediana Edad , Pruebas Neuropsicológicas , Estudios de Cohortes
2.
Neurobiol Aging ; 137: 62-77, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38431999

RESUMEN

Resting-state eyes-closed electroencephalographic (rsEEG) alpha rhythms are dominant in posterior cortical areas in healthy adults and are abnormal in subjective memory complaint (SMC) persons with Alzheimer's disease amyloidosis. This exploratory study in 161 SMC participants tested the relationships between those rhythms and seed-based resting-state functional magnetic resonance imaging (rs-fMRI) connectivity between thalamus and visual cortical networks as a function of brain amyloid burden, revealed by positron emission tomography and cognitive reserve, measured by educational attainment. The SMC participants were divided into 4 groups according to 2 factors: Education (Edu+ and Edu-) and Amyloid burden (Amy+ and Amy-). There was a statistical interaction (p < 0.05) between the two factors, and the subgroup analysis using estimated marginal means showed a positive association between the mentioned rs-fMRI connectivity and the posterior rsEEG alpha rhythms in the SMC participants with low brain amyloidosis and high CR (Amy-/Edu+). These results suggest that in SMC persons, early Alzheimer's disease amyloidosis may contrast the beneficial effects of cognitive reserve on neurophysiological oscillatory mechanisms at alpha frequencies and connectivity between the thalamus and visual cortical networks.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Disfunción Cognitiva , Humanos , Anciano , Ritmo alfa , Enfermedad de Alzheimer/psicología , Electroencefalografía/métodos , Imagen por Resonancia Magnética , Amiloide
3.
Brain ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38437860

RESUMEN

Cholinergic degeneration is significant in Lewy body disease, including Parkinson's disease, dementia with Lewy bodies, and isolated REM sleep behavior disorder. Extensive research has demonstrated cholinergic alterations in the central nervous system of these disorders. More recently, studies have revealed cholinergic denervation in organs that receive parasympathetic denervation. This enables a comprehensive review of cholinergic changes in Lewy body disease, encompassing both central and peripheral regions, various disease stages, and diagnostic categories. Across studies, brain regions affected in Lewy body dementia show equal or greater levels of cholinergic impairment compared to the brain regions affected in Lewy body disease without dementia. This observation suggests a continuum of cholinergic alterations between these disorders. Patients without dementia exhibit relative sparing of limbic regions, whereas occipital and superior temporal regions appear to be affected to a similar extent in patients with and without dementia. This implies that posterior cholinergic cell groups in the basal forebrain are affected in the early stages of Lewy body disorders, while more anterior regions are typically affected later in the disease progression. The topographical changes observed in patients affected by comorbid Alzheimer pathology may reflect a combination of changes seen in pure forms of Lewy body disease and those seen in Alzheimer's disease. This suggests that Alzheimer co-pathology is important to understand cholinergic degeneration in Lewy body disease. Thalamic cholinergic innervation is more affected in Lewy body patients with dementia compared to those without dementia, and this may contribute to the distinct clinical presentations observed in these groups. In patients with Alzheimer's disease, the thalamus is variably affected, suggesting a different sequential involvement of cholinergic cell groups in Alzheimer's disease compared to Lewy body disease. Patients with isolated REM sleep behavior disorder demonstrate cholinergic denervation in abdominal organs that receive parasympathetic innervation from the dorsal motor nucleus of the vagus, similar to patients who experienced this sleep disorder in their prodrome. This implies that REM sleep behavior disorder is important for understanding peripheral cholinergic changes in both prodromal and manifest phases of Lewy body disease. In conclusion, cholinergic changes in Lewy body disease carry implications for understanding phenotypes and the influence of Alzheimer co-pathology, delineating subtypes and pathological spreading routes, and for developing tailored treatments targeting the cholinergic system.

4.
Neuroimage ; 289: 120537, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38367651

RESUMEN

BACKGROUND: [18F]flortaucipir (FTP) tau PET quantification is known to be affected by non-specific binding in off-target regions. Although partial volume correction (PVC) techniques partially account for this effect, their inclusion may also introduce noise and variability into the quantification process. While the impact of these effects has been studied in cross-sectional designs, the benefits and drawbacks of PVC on longitudinal FTP studies is still under scrutiny. The aim of this work was to study the performance of the most common PVC techniques for longitudinal FTP imaging. METHODS: A cohort of 247 individuals from the Alzheimer's Disease Neuroimaging Initiative with concurrent baseline FTP-PET, amyloid-beta (Aß) PET and structural MRI, as well as with follow-up FTP-PET and MRI were included in the study. FTP-PET scans were corrected for partial volume effects using Meltzer's, a simple and popular analytical PVC, and both the region-based voxel-wise (RBV) and the iterative Yang (iY) corrections. FTP SUVR values and their longitudinal rates of change were calculated for regions of interest (ROI) corresponding to Braak Areas I-VI, for a temporal meta-ROI and for regions typically displaying off-target FTP binding (caudate, putamen, pallidum, thalamus, choroid plexus, hemispheric white matter, cerebellar white matter, and cerebrospinal fluid). The longitudinal correlation between binding in off-target and target ROIs was analysed for the different PVCs. Additionally, group differences in longitudinal FTP SUVR rates of change between Aß-negative (A-) and Aß-positive (A+), and between cognitively unimpaired (CU) and cognitively impaired (CI) individuals, were studied. Finally, we compared the ability of different partial-volume-corrected baseline FTP SUVRs to predict longitudinal brain atrophy and cognitive decline. RESULTS: Among off-target ROIs, hemispheric white matter showed the highest correlation with longitudinal FTP SUVR rates from cortical target ROIs (R2=0.28-0.82), with CSF coming in second (R2=0.28-0.42). Application of voxel-wise PVC techniques minimized this correlation, with RBV performing best (R2=0.00-0.07 for hemispheric white matter). PVC also increased group differences between CU and CI individuals in FTP SUVR rates of change across all target regions, with RBV again performing best (No PVC: Cohen's d = 0.26-0.66; RBV: Cohen's d = 0.43-0.74). These improvements were not observed for differentiating A- from A+ groups. Additionally, voxel-wise PVC techniques strengthened the correlation between baseline FTP SUVR and longitudinal grey matter atrophy and cognitive decline. CONCLUSION: Quantification of longitudinal FTP SUVR rates of change is affected by signal from off-target regions, especially the hemispheric white matter and the CSF. Voxel-wise PVC techniques significantly reduce this effect. PVC provided a significant but modest benefit for tasks involving the measurement of group-level longitudinal differences. These findings are particularly relevant for the estimations of sample sizes and analysis methodologies of longitudinal group studies.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Encéfalo/metabolismo , Estudios Transversales , Enfermedad de Alzheimer/metabolismo , Estudios Longitudinales , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/patología , Tomografía de Emisión de Positrones/métodos , Atrofia/patología , Proteínas tau/metabolismo
5.
Brain ; 147(1): 255-266, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37975822

RESUMEN

Dementia with Lewy bodies is characterized by a high burden of autonomic dysfunction and Lewy pathology in peripheral organs and components of the sympathetic and parasympathetic nervous system. Parasympathetic terminals may be quantified with 18F-fluoroetoxybenzovesamicol, a PET tracer that binds to the vesicular acetylcholine transporter in cholinergic presynaptic terminals. Parasympathetic imaging may be useful for diagnostics, improving our understanding of autonomic dysfunction and for clarifying the spatiotemporal relationship of neuronal degeneration in prodromal disease. Therefore, we aimed to investigate the cholinergic parasympathetic integrity in peripheral organs and central autonomic regions of subjects with dementia with Lewy bodies and its association with subjective and objective measures of autonomic dysfunction. We hypothesized that organs with known parasympathetic innervation, especially the pancreas and colon, would have impaired cholinergic integrity. To achieve these aims, we conducted a cross-sectional comparison study including 23 newly diagnosed non-diabetic subjects with dementia with Lewy bodies (74 ± 6 years, 83% male) and 21 elderly control subjects (74 ± 6 years, 67% male). We obtained whole-body images to quantify PET uptake in peripheral organs and brain images to quantify PET uptake in regions of the brainstem and hypothalamus. Autonomic dysfunction was assessed with questionnaires and measurements of orthostatic blood pressure. Subjects with dementia with Lewy bodies displayed reduced cholinergic tracer uptake in the pancreas (32% reduction, P = 0.0003) and colon (19% reduction, P = 0.0048), but not in organs with little or no parasympathetic innervation. Tracer uptake in a region of the medulla oblongata overlapping the dorsal motor nucleus of the vagus correlated with autonomic symptoms (rs = -0.54, P = 0.0077) and changes in orthostatic blood pressure (rs = 0.76, P < 0.0001). Tracer uptake in the pedunculopontine region correlated with autonomic symptoms (rs = -0.52, P = 0.0104) and a measure of non-motor symptoms (rs = -0.47, P = 0.0230). In conclusion, our findings provide the first imaging-based evidence of impaired cholinergic integrity of the pancreas and colon in dementia with Lewy bodies. The observed changes may reflect parasympathetic denervation, implying that this process is initiated well before the point of diagnosis. The findings also support that cholinergic denervation in the brainstem contributes to dysautonomia.


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo , Enfermedad por Cuerpos de Lewy , Humanos , Masculino , Anciano , Femenino , Enfermedad por Cuerpos de Lewy/diagnóstico por imagen , Enfermedad por Cuerpos de Lewy/patología , Estudios Transversales , Enfermedades del Sistema Nervioso Autónomo/diagnóstico por imagen , Enfermedades del Sistema Nervioso Autónomo/etiología , Páncreas/patología , Colinérgicos , Colon/patología
6.
Neurobiol Aging ; 135: 26-38, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38157587

RESUMEN

Previous studies have demonstrated resilience to AD-related neuropathology in a form of cognitive reserve (CR). In this study we investigated a relationship between CR and hypometabolic subtypes of AD, specifically the typical and the limbic-predominant subtypes. We analyzed data from 59 Aß-positive cognitively normal (CN), 221 prodromal Alzheimer's disease (AD) and 174 AD dementia participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) from ADNI and ADNIGO/2 phases. For replication, we analyzed data from 5 Aß-positive CN, 89 prodromal AD and 43 AD dementia participants from ADNI3. CR was estimated as standardized residuals in a model predicting cognition from temporoparietal grey matter volumes and covariates. Higher CR estimates predicted slower cognitive decline. Typical and limbic-predominant hypometabolic subtypes demonstrated similar baseline CR, but the results suggested a faster decline of CR in the typical subtype. These findings support the relationship between subtypes and CR, specifically longitudinal trajectories of CR. Results also underline the importance of longitudinal analyses in research on CR.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Reserva Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Cognición , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Disfunción Cognitiva/patología
7.
medRxiv ; 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38045300

RESUMEN

Limbic-predominant age-related TDP-43 encephalopathy (LATE) is a neuropathologically-defined disease that affects 40% of persons in advanced age, but its associated neurological syndrome is not defined. LATE neuropathological changes (LATE-NC) are frequently comorbid with Alzheimer's disease neuropathologic changes (ADNC). When seen in isolation, LATE-NC have been associated with a predominantly amnestic profile and slow clinical progression. We propose a set of clinical criteria for a limbic-predominant amnestic neurodegenerative syndrome (LANS) that is highly associated with LATE-NC but also other pathologic entities. The LANS criteria incorporate core, standard and advanced features that are measurable in vivo, including older age at evaluation, mild clinical syndrome, disproportionate hippocampal atrophy, impaired semantic memory, limbic hypometabolism, absence of neocortical degenerative patterns and low likelihood of neocortical tau, with degrees of certainty (highest, high, moderate, low). We operationalized this set of criteria using clinical, imaging and biomarker data to validate its associations with clinical and pathologic outcomes. We screened autopsied patients from Mayo Clinic (n = 922) and ADNI (n = 93) cohorts and applied the LANS criteria to those with an antemortem predominant amnestic syndrome (Mayo, n = 165; ADNI, n = 53). ADNC, ADNC/LATE-NC and LATE-NC accounted for 35%, 37% and 4% of cases in the Mayo cohort, respectively, and 30%, 22%, and 9% of cases in the ADNI cohort, respectively. The LANS criteria effectively categorized these cases, with ADNC having the lowest LANS likelihoods, LATE-NC patients having the highest likelihoods, and ADNC/LATE-NC patients having intermediate likelihoods. A logistic regression model using the LANS features as predictors of LATE-NC achieved a balanced accuracy of 74.6% in the Mayo cohort, and out-of-sample predictions in the ADNI cohort achieved a balanced accuracy of 73.3%. Patients with high LANS likelihoods had a milder and slower clinical course and more severe temporo-limbic degeneration compared to those with low likelihoods. Stratifying ADNC/LATE-NC patients from the Mayo cohort according to their LANS likelihood revealed that those with higher likelihoods had more temporo-limbic degeneration and a slower rate of cognitive decline, and those with lower likelihoods had more lateral temporo-parietal degeneration and a faster rate of cognitive decline. The implementation of LANS criteria has implications to disambiguate the different driving etiologies of progressive amnestic presentations in older age and guide prognosis, treatment, and clinical trials. The development of in vivo biomarkers specific to TDP-43 pathology are needed to refine molecular associations between LANS and LATE-NC and precise antemortem diagnoses of LATE.

9.
Schizophr Bull ; 49(6): 1530-1541, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-37606273

RESUMEN

BACKGROUND AND HYPOTHESIS: The cholinergic system is altered in schizophrenia. Particularly, patients' volumes of basal-forebrain cholinergic nuclei (BFCN) are lower and correlated with attentional deficits. It is unclear, however, if and how BFCN changes and their link to cognitive symptoms extend across the schizophrenia spectrum, including individuals with at-risk mental state for psychosis (ARMS) or during first psychotic episode (FEP). STUDY DESIGN: To address this question, we assessed voxel-based morphometry (VBM) of structural magnetic resonance imaging data of anterior and posterior BFCN subclusters as well as symptom ratings, including cognitive, positive, and negative symptoms, in a large multi-site dataset (n = 4) comprising 68 ARMS subjects, 98 FEP patients (27 unmedicated and 71 medicated), 140 patients with established schizophrenia (SCZ; medicated), and 169 healthy controls. RESULTS: In SCZ, we found lower VBM measures for the anterior BFCN, which were associated with the anticholinergic burden of medication and correlated with patients' cognitive deficits. In contrast, we found larger VBM measures for the posterior BFCN in FEP, which were driven by unmedicated patients and correlated at-trend with cognitive deficits. We found no BFCN changes in ARMS. Altered VBM measures were not correlated with positive or negative symptoms. CONCLUSIONS: Results demonstrate complex (posterior vs. anterior BFCN) and non-linear (larger vs. lower VBM) differences in BFCN across the schizophrenia spectrum, which are specifically associated both with medication, including its anticholinergic burden, and cognitive symptoms. Data suggest an altered trajectory of BFCN integrity in schizophrenia, influenced by medication and relevant for cognitive symptoms.


Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/patología , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/tratamiento farmacológico , Prosencéfalo , Imagen por Resonancia Magnética/métodos , Antagonistas Colinérgicos/efectos adversos , Cognición
10.
JAMA Neurol ; 80(10): 1051-1061, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37578787

RESUMEN

Importance: An increased tau positron emission tomography (PET) signal in the medial temporal lobe (MTL) has been observed in older individuals in the absence of amyloid-ß (Aß) pathology. Little is known about the longitudinal course of this condition, and its association with Alzheimer disease (AD) remains unclear. Objective: To study the pathologic and clinical course of older individuals with PET-evidenced MTL tau deposition (TMTL+) in the absence of Aß pathology (A-), and the association of this condition with the AD continuum. Design, Setting, and Participants: A multicentric, observational, longitudinal cohort study was conducted using pooled data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), Harvard Aging Brain Study (HABS), and the AVID-A05 study, collected between July 2, 2015, and August 23, 2021. Participants in the ADNI, HABS, and AVID-A05 studies (N = 1093) with varying degrees of cognitive performance were deemed eligible if they had available tau PET, Aß PET, and magnetic resonance imaging scans at baseline. Of these, 128 participants did not meet inclusion criteria based on Aß PET and tau PET biomarker profiles (A+ TMTL-). Exposures: Tau and Aß PET, magnetic resonance imaging, cerebrospinal fluid biomarkers, and cognitive assessments. Main Outcomes and Measures: Cross-sectional and longitudinal measures for tau and Aß PET, cortical atrophy, cognitive scores, and core AD cerebrospinal fluid biomarkers (Aß42/40 and tau phosphorylated at threonine 181 p-tau181 available in a subset). Results: Among the 965 individuals included in the study, 503 were women (52.1%) and the mean (SD) age was 73.9 (8.1) years. A total of 51% of A- individuals and 78% of A+ participants had increased tau PET signal in the entorhinal cortex (TMTL+) compared with healthy younger (aged <39 years) controls. Compared with A- TMTL-, A- TMTL+ participants showed statistically significant, albeit moderate, longitudinal (mean [SD], 1.83 [0.84] years) tau PET increases that were largely limited to the temporal lobe, whereas those with A+ TMTL+ showed faster and more cortically widespread tau PET increases. In contrast to participants with A+ TMTL+, those with A- TMTL+ did not show any noticeable Aß accumulation over follow-up (mean [SD], 2.36 [0.76] years). Complementary cerebrospinal fluid analysis confirmed longitudinal p-tau181 increases in A- TMTL+ in the absence of increased Aß accumulation. Participants with A- TMTL+ had accelerated MTL atrophy, whereas those with A+ TMTL+ showed accelerated atrophy in widespread temporoparietal brain regions. Increased MTL tau PET uptake in A- individuals was associated with cognitive decline, but at a significantly slower rate compared with A+ TMTL+. Conclusions and Relevance: In this study, individuals with A- TMTL+ exhibited progressive tau accumulation and neurodegeneration, but these processes were comparably slow, remained largely restricted to the MTL, were associated with only subtle changes in global cognitive performance, and were not accompanied by detectable accumulation of Aß biomarkers. These data suggest that individuals with A- TMTL+ are not on a pathologic trajectory toward AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Femenino , Anciano , Masculino , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/líquido cefalorraquídeo , Estudios Longitudinales , Proteínas tau/líquido cefalorraquídeo , Estudios Transversales , Péptidos beta-Amiloides/líquido cefalorraquídeo , Tomografía de Emisión de Positrones , Biomarcadores/líquido cefalorraquídeo , Progresión de la Enfermedad , Atrofia
11.
J Alzheimers Dis ; 95(3): 1013-1028, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37638433

RESUMEN

BACKGROUND: Atrophy of cholinergic basal forebrain (BF) nuclei is a frequent finding in magnetic resonance imaging (MRI) volumetry studies that examined patients with prodromal or clinical Alzheimer's disease (AD), but less clear for individuals in earlier stages of the clinical AD continuum. OBJECTIVE: To examine BF volume reductions in subjective cognitive decline (SCD) participants with AD pathologic changes. METHODS: The present study compared MRI-based BF volume measurements in age- and sex-matched samples of N = 24 amyloid-positive and N = 24 amyloid-negative SCD individuals, based on binary visual ratings of Florbetaben positron emission tomography (PET) measurements. Additionally, we assessed associations of BF volume with cortical amyloid burden, based on semiquantitative Centiloid (CL) analyses. RESULTS: Group differences approached significance for BF total volume (p = 0.061) and the Ch4 subregion (p = 0.059) only, showing the expected relative volume reductions for the amyloid-positive subgroup. There were also significant inverse correlations between BF volumes and CL values, which again were most robust for BF total volume and the Ch4 subregion. CONCLUSIONS: The results are consistent with the hypothesis that amyloid-positive SCD individuals, which are considered to represent a transitional stage on the clinical AD continuum, already show incipient alterations of BF integrity. The negative association with a continuous measure of cortical amyloid burden also suggests that this may reflect an incremental process. Yet, further research is needed to evaluate whether BF changes already emerge at "grey zone" levels of amyloid accumulation, before amyloidosis is reliably detected by PET visual readings.


Asunto(s)
Enfermedad de Alzheimer , Prosencéfalo Basal , Disfunción Cognitiva , Humanos , Prosencéfalo Basal/diagnóstico por imagen , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Amiloide/metabolismo , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones , Proteínas Amiloidogénicas , Péptidos beta-Amiloides/metabolismo
12.
Brain ; 146(12): 4964-4973, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37403733

RESUMEN

Cognitive decline in Parkinson's disease is related to cholinergic system degeneration, which can be assessed in vivo using structural MRI markers of basal forebrain volume and PET measures of cortical cholinergic activity. In the present study we aimed to examine the interrelation between basal forebrain degeneration and PET-measured depletion of cortical acetylcholinesterase activity as well as their relative contribution to cognitive impairment in Parkinson's disease. This cross-sectional study included 143 Parkinson's disease participants without dementia and 52 healthy control participants who underwent structural MRI, PET scanning with 11C-methyl-4-piperidinyl propionate (PMP) as a measure of cortical acetylcholinesterase activity, and a detailed cognitive assessment. Based on the fifth percentile of the overall cortical PMP PET signal from the control group, people with Parkinson's disease were subdivided into a normo-cholinergic (n = 94) and a hypo-cholinergic group (n = 49). Volumes of functionally defined posterior and anterior basal forebrain subregions were extracted using an established automated MRI volumetry approach based on a stereotactic atlas of cholinergic basal forebrain nuclei. We used Bayesian t-tests to compare basal forebrain volumes between controls, and normo- and hypo-cholinergic Parkinson's participants after covarying out age, sex and years of education. Associations between the two cholinergic imaging measures were assessed across all people with Parkinson's disease using Bayesian correlations and their respective relations with performance in different cognitive domains were assessed with Bayesian ANCOVAs. As a specificity analysis, hippocampal volume was added to the analysis. We found evidence for a reduction of posterior basal forebrain volume in the hypo-cholinergic compared to both normo-cholinergic Parkinson's disease [Bayes factor against the null model (BF10) = 8.2] and control participants (BF10 = 6.0), while for the anterior basal forebrain the evidence was inconclusive (BF10 < 3). In continuous association analyses, posterior basal forebrain volume was significantly associated with cortical PMP PET signal in a temporo-posterior distribution. The combined models for the prediction of cognitive scores showed that both cholinergic markers (posterior basal forebrain volume and cortical PMP PET signal) were independently related to multi-domain cognitive deficits, and were more important predictors for all cognitive scores, including memory scores, than hippocampal volume. We conclude that degeneration of the posterior basal forebrain in Parkinson's disease is accompanied by functional cortical changes in acetylcholinesterase activity and that both PET and MRI cholinergic imaging markers are independently associated with multi-domain cognitive deficits in Parkinson's disease without dementia. Comparatively, hippocampal atrophy only seems to have minimal involvement in the development of early cognitive impairment in Parkinson's disease.


Asunto(s)
Prosencéfalo Basal , Disfunción Cognitiva , Demencia , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Acetilcolinesterasa/metabolismo , Teorema de Bayes , Estudios Transversales , Tomografía de Emisión de Positrones/métodos , Colinérgicos , Disfunción Cognitiva/etiología , Disfunción Cognitiva/complicaciones , Imagen por Resonancia Magnética , Demencia/complicaciones , Prosencéfalo Basal/diagnóstico por imagen , Prosencéfalo Basal/metabolismo
13.
Mov Disord ; 38(10): 1871-1880, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37492892

RESUMEN

BACKGROUND: Degeneration of the cortically-projecting cholinergic basal forebrain (cBF) is a well-established pathologic correlate of cognitive decline in Parkinson's disease (PD). In Alzheimer's disease (AD) the effect of cBF degeneration on cognitive decline was found to be mediated by parallel atrophy of denervated cortical areas. OBJECTIVES: To examine whether the association between cBF degeneration and cognitive decline in PD is mediated by parallel atrophy of cortical areas and whether these associations depend on the presence of comorbid AD pathology. METHODS: We studied 162 de novo PD patients who underwent serial 3 T magnetic resonance imaging scanning (follow-up: 2.33 ± 1.46 years) within the Parkinson's Progression Markers Initiative. cBF volume and regional cortical thickness were automatically calculated using established procedures. Individual slopes of structural brain changes and cognitive decline were estimated using linear-mixed models. Associations between longitudinal cBF degeneration, regional cortical thinning, and cognitive decline were assessed using regression analyses and mediation effects were assessed using nonparametric bootstrap. Complementary analyses assessed the effect of amyloid-ß biomarker positivity on these associations. RESULTS: After controlling for global brain atrophy, longitudinal cBF degeneration was highly correlated with faster cortical thinning (PFDR < 0.05), and thinning in cBF-associated cortical areas mediated the association between cBF degeneration and cognitive decline (rcBF-MoCA = 0.30, P < 0.001). Interestingly, both longitudinal cBF degeneration and its association with cortical thinning were largely independent of amyloid-ß status. CONCLUSIONS: cBF degeneration in PD is linked to parallel thinning of cortical target areas, which mediate the effect on cognitive decline. These associations are independent of amyloid-ß status, indicating that they reflect proper features of PD pathophysiology. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Alzheimer , Prosencéfalo Basal , Disfunción Cognitiva , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/patología , Prosencéfalo Basal/diagnóstico por imagen , Adelgazamiento de la Corteza Cerebral/patología , Pruebas Neuropsicológicas , Disfunción Cognitiva/etiología , Disfunción Cognitiva/complicaciones , Péptidos beta-Amiloides , Enfermedad de Alzheimer/patología , Atrofia/patología , Imagen por Resonancia Magnética/métodos
14.
Brain ; 146(11): 4520-4531, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37284793

RESUMEN

A clinical diagnosis of Alzheimer's disease dementia (ADD) encompasses considerable pathological and clinical heterogeneity. While Alzheimer's disease patients typically show a characteristic temporo-parietal pattern of glucose hypometabolism on 18F-fluorodeoxyglucose (FDG)-PET imaging, previous studies have identified a subset of patients showing a distinct posterior-occipital hypometabolism pattern associated with Lewy body pathology. Here, we aimed to improve the understanding of the clinical relevance of these posterior-occipital FDG-PET patterns in patients with Alzheimer's disease-like amnestic presentations. Our study included 1214 patients with clinical diagnoses of ADD (n = 305) or amnestic mild cognitive impairment (aMCI, n = 909) from the Alzheimer's Disease Neuroimaging Initiative, who had FDG-PET scans available. Individual FDG-PET scans were classified as being suggestive of Alzheimer's (AD-like) or Lewy body (LB-like) pathology by using a logistic regression classifier trained on a separate set of patients with autopsy-confirmed Alzheimer's disease or Lewy body pathology. AD- and LB-like subgroups were compared on amyloid-ß and tau-PET, domain-specific cognitive profiles (memory versus executive function performance), as well as the presence of hallucinations and their evolution over follow-up (≈6 years for aMCI, ≈3 years for ADD). Around 12% of the aMCI and ADD patients were classified as LB-like. For both aMCI and ADD patients, the LB-like group showed significantly lower regional tau-PET burden than the AD-like subgroup, but amyloid-ß load was only significantly lower in the aMCI LB-like subgroup. LB- and AD-like subgroups did not significantly differ in global cognition (aMCI: d = 0.15, P = 0.16; ADD: d = 0.02, P = 0.90), but LB-like patients exhibited a more dysexecutive cognitive profile relative to the memory deficit (aMCI: d = 0.35, P = 0.01; ADD: d = 0.85 P < 0.001), and had a significantly higher risk of developing hallucinations over follow-up [aMCI: hazard ratio = 1.8, 95% confidence interval = (1.29, 3.04), P = 0.02; ADD: hazard ratio = 2.2, 95% confidence interval = (1.53, 4.06) P = 0.01]. In summary, a sizeable group of clinically diagnosed ADD and aMCI patients exhibit posterior-occipital FDG-PET patterns typically associated with Lewy body pathology, and these also show less abnormal Alzheimer's disease biomarkers as well as specific clinical features typically associated with dementia with Lewy bodies.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad por Cuerpos de Lewy , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/psicología , Fluorodesoxiglucosa F18 , Cuerpos de Lewy/patología , Péptidos beta-Amiloides , Tomografía de Emisión de Positrones/métodos , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Alucinaciones , Enfermedad por Cuerpos de Lewy/diagnóstico por imagen
15.
Neurobiol Dis ; 183: 106182, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37286171

RESUMEN

BACKGROUND AND OBJECTIVES: It has been recently suggested that LRRK2 mutations are associated with a more benign clinical phenotype and a potentially more preserved cholinergic function in Parkinson's disease (PD). However, to our knowledge, no studies have tested whether the better clinical progression observed in LRRK2-PD patients is associated with more preserved volumes of a cholinergic brain area, the basal forebrain (BF). To address this hypothesis, here we compared BF volumes in LRRK2 carriers with and without PD with respect to idiopathic PD (iPD) patients and controls, and assessed whether they are associated with better clinical progression observed in LRRK2-PD compared to iPD. METHODS: Thirty-one symptomatic LRRK2-PD patients and 13 asymptomatic LRRK2 individuals were included from the Parkinson's Progression Markers Initiative. In addition, 31 patients with iPD and 13 healthy controls matched to the previous groups were also included. BF volumes were automatically extracted from baseline T1-weighted MRI scans using a stereotactic atlas of cholinergic nuclei. These volumes were then compared between groups and their relationship with longitudinal cognitive changes was evaluated using linear mixed effects models. Mediation analyses assessed whether BF volumes mediated differences in cognitive trajectories between groups. RESULTS: LRRK2-PD patients showed significantly higher BF volumes compared to iPD (P = 0.019) as did asymptomatic LRRK2 subjects compared to controls (P = 0.008). There were no other significant differences in cortical regions or subcortical volumes between these groups. BF volumes predicted longitudinal decline in several cognitive functions in iPD patients but not in LRRK2-PD, who did not show cognitive changes over a 4-year follow-up period. BF volumes were a significant mediator of the different cognitive trajectories between iPD and LRRK2-PD patients (95% CI 0.056-2.955). DISCUSSION: Our findings suggest that mutations in LRRK2 are associated with increased BF volumes, potentially reflecting a compensatory hypercholinergic state that could prevent cognitive decline in LRRK2-PD patients.


Asunto(s)
Prosencéfalo Basal , Disfunción Cognitiva , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/complicaciones , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Mutación/genética , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/genética , Disfunción Cognitiva/complicaciones , Colinérgicos , Progresión de la Enfermedad
17.
Brain ; 146(9): 3690-3704, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37279796

RESUMEN

Cholinergic changes play a fundamental role in the natural history of dementia with Lewy bodies and Lewy body disease in general. Despite important achievements in the field of cholinergic research, significant challenges remain. We conducted a study with four main objectives: (i) to examine the integrity of cholinergic terminals in newly diagnosed dementia with Lewy bodies; (ii) to disentangle the cholinergic contribution to dementia by comparing cholinergic changes in Lewy body patients with and without dementia; (iii) to investigate the in vivo relationship between cholinergic terminal loss and atrophy of cholinergic cell clusters in the basal forebrain at different stages of Lewy body disease; and (iv) to test whether any asymmetrical degeneration in cholinergic terminals would correlate with motor dysfunction and hypometabolism. To achieve these objectives, we conducted a comparative cross-sectional study of 25 newly diagnosed dementia with Lewy bodies patients (age 74 ± 5 years, 84% male), 15 healthy control subjects (age 75 ± 6 years, 67% male) and 15 Parkinson's disease patients without dementia (age 70 ± 7 years, 60% male). All participants underwent 18F-fluoroetoxybenzovesamicol PET and high-resolution structural MRI. In addition, we collected clinical 18F-fluorodeoxyglucose PET images. Brain images were normalized to standard space and regional tracer uptake and volumetric indices of basal forebrain degeneration were extracted. Patients with dementia showed spatially distinct reductions in cholinergic terminals across the cerebral cortex, limbic system, thalamus and brainstem. Also, cholinergic terminal binding in cortical and limbic regions correlated quantitatively and spatially with atrophy of the basal forebrain. In contrast, patients without dementia showed decreased cholinergic terminal binding in the cerebral cortex despite preserved basal forebrain volumes. In patients with dementia, cholinergic terminal reductions were most severe in limbic regions and least severe in occipital regions compared to those without dementia. Interhemispheric asymmetry of cholinergic terminals correlated with asymmetry of brain metabolism and lateralized motor function. In conclusion, this study provides robust evidence for severe cholinergic terminal loss in newly diagnosed dementia with Lewy bodies, which correlates with structural imaging measures of cholinergic basal forebrain degeneration. In patients without dementia, our findings suggest that loss of cholinergic terminal function occurs 'before' neuronal cell degeneration. Moreover, the study supports that degeneration of the cholinergic system is important for brain metabolism and may be linked with degeneration in other transmitter systems. Our findings have implications for understanding how cholinergic system pathology contributes to the clinical features of Lewy body disease, changes in brain metabolism and disease progression patterns.


Asunto(s)
Enfermedad por Cuerpos de Lewy , Humanos , Masculino , Anciano , Anciano de 80 o más Años , Persona de Mediana Edad , Femenino , Enfermedad por Cuerpos de Lewy/metabolismo , Cuerpos de Lewy/metabolismo , Estudios Transversales , Colinérgicos , Atrofia/patología
18.
Alzheimers Res Ther ; 15(1): 117, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37353809

RESUMEN

BACKGROUND: Donepezil is an approved therapy for the treatment of Alzheimer's disease (AD). Results across clinical trials have been inconsistent, which may be explained by design-methodological issues, the pathophysiological heterogeneity of AD, and diversity of included study participants. We investigated whether response to donepezil differs in mild cognitive impaired (MCI) individuals demonstrating different magnetic resonance imaging (MRI) subtypes. METHODS: From the Hippocampus Study double-blind, randomized clinical trial, we included 173 MCI individuals (donepezil = 83; placebo = 90) with structural MRI data, at baseline and at clinical follow-up assessments (6-12-month). Efficacy outcomes were the annualized percentage change (APC) in hippocampal, ventricular, and total grey matter volumes, as well as in the AD cortical thickness signature. Participants were classified into MRI subtypes as typical AD, limbic-predominant, hippocampal-sparing, or minimal atrophy at baseline. We primarily applied a subtyping approach based on continuous scale of two subtyping dimensions. We also used the conventional categorical subtyping approach for comparison. RESULTS: Donepezil-treated MCI individuals showed slower atrophy rates compared to the placebo group, but only if they belonged to the minimal atrophy or hippocampal-sparing subtypes. Importantly, only the continuous subtyping approach, but not the conventional categorical approach, captured this differential response. CONCLUSIONS: Our data suggest that individuals with MCI, with hippocampal-sparing or minimal atrophy subtype, may have improved benefit from donepezil, as compared with MCI individuals with typical or limbic-predominant patterns of atrophy. The newly proposed continuous subtyping approach may have advantages compared to the conventional categorical approach. Future research is warranted to demonstrate the potential of subtype stratification for disease prognosis and response to treatment. TRIAL REGISTRATION: ClinicalTrial.gov NCT00403520. Submission Date: November 21, 2006.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Donepezilo/uso terapéutico , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/tratamiento farmacológico , Imagen por Resonancia Magnética , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/tratamiento farmacológico , Atrofia
19.
Alzheimers Dement ; 19(11): 4817-4827, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37021589

RESUMEN

BACKGROUND: Basal forebrain (BF) degeneration occurs in Down syndrome (DS)-associated Alzheimer's disease (AD). However, the dynamics of BF atrophy with age and disease progression, its impact on cognition, and its relationship with AD biomarkers have not been studied in DS. METHODS: We included 234 adults with DS (150 asymptomatic, 38 prodromal AD, and 46 AD dementia) and 147 euploid controls. BF volumes were extracted from T-weighted magnetic resonance images using a stereotactic atlas in SPM12. We assessed BF volume changes with age and along the clinical AD continuum and their relationship to cognitive performance, cerebrospinal fluid (CSF) and plasma amyloid/tau/neurodegeneration biomarkers, and hippocampal volume. RESULTS: In DS, BF volumes decreased with age and along the clinical AD continuum and significantly correlated with amyloid, tau, and neurofilament light chain changes in CSF and plasma, hippocampal volume, and cognitive performance. DISCUSSION: BF atrophy is a potentially valuable neuroimaging biomarker of AD-related cholinergic neurodegeneration in DS.


Asunto(s)
Enfermedad de Alzheimer , Prosencéfalo Basal , Síndrome de Down , Humanos , Adulto , Enfermedad de Alzheimer/patología , Síndrome de Down/diagnóstico por imagen , Síndrome de Down/complicaciones , Atrofia/patología , Biomarcadores/líquido cefalorraquídeo
20.
Mov Disord ; 38(5): 755-763, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36912400

RESUMEN

BACKGROUND: Peripheral inflammatory immune responses are suggested to play a major role in dopaminergic degeneration in Parkinson's disease (PD). The neutrophil-to-lymphocyte ratio (NLR) is a well-established biomarker of systemic inflammation in PD. Degeneration of the nigrostriatal dopaminergic system can be assessed in vivo using [123 I]FP-CIT single photon emission computed tomography imaging of striatal dopamine transporter (DAT) density. OBJECTIVES: To assess the relationship between the peripheral immune profile (NLR, lymphocytes, and neutrophils) and striatal DAT density in patients with PD. METHODS: We assessed clinical features, the peripheral immune profile, and striatal [123 I]FP-CIT DAT binding levels of 211 patients with PD (primary-cohort). Covariate-controlled associations between the immune response and striatal DAT levels were assessed using linear regression analyses. For replication purposes, we also studied a separate cohort of 344 de novo patients with PD enrolled in the Parkinson's Progression Markers Initiative (PPMI-cohort). RESULTS: A higher NLR was significantly associated with lower DAT levels in the caudate (primary-cohort: ß = -0.01, p < 0.001; PPMI-cohort: ß = -0.05, p = 0.05) and the putamen (primary-cohort: ß = -0.05, p = 0.02; PPMI-cohort: ß = -0.06, p = 0.02). Intriguingly, a lower lymphocyte count was significantly associated with lower DAT levels in both the caudate (primary-cohort: ß = +0.09, p < 0.05; PPMI-cohort: ß = +0.11, p = 0.02) and the putamen (primary-cohort: ß = +0.09, p < 0.05, PPMI-cohort: ß = +0.14, p = 0.01), but an association with the neutrophil count was not consistently observed (caudate; primary-cohort: ß = -0.05, p = 0.02; PPMI-cohort: ß = 0, p = 0.94; putamen; primary-cohort: ß = -0.04, p = 0.08; PPMI-cohort: ß = -0.01, p = 0.73). CONCLUSIONS: Our findings across two independent cohorts suggest a relationship between systemic inflammation and dopaminergic degeneration in patients with PD. This relationship was mainly driven by the lymphocyte count. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/metabolismo , Tropanos , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Cuerpo Estriado/metabolismo , Tomografía Computarizada de Emisión de Fotón Único/métodos , Inflamación/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...