Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 11(9)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37764159

RESUMEN

The current work deals with genomic analysis, possible ecological functions, and biotechnological potential of two bacterial strains, HO-A22T and SHC 2-14, isolated from unique subsurface environments, the Cheremukhovskoe oil field (Tatarstan, Russia) and nitrate- and radionuclide-contaminated groundwater (Tomsk region, Russia), respectively. New isolates were characterized using polyphasic taxonomy approaches and genomic analysis. The genomes of the strains HO-A22T and SHC 2-14 contain the genes involved in nitrate reduction, hydrocarbon degradation, extracellular polysaccharide synthesis, and heavy metal detoxification, confirming the potential for their application in various environmental biotechnologies. Genomic data were confirmed by cultivation studies. Both strains were found to be neutrophilic, chemoorganotrophic, facultatively anaerobic bacteria, growing at 15-33 °C and 0-1.6% NaCl (w/v). The 16S rRNA gene sequences of the strains were similar to those of the type strains of the genus Ensifer (99.0-100.0%). Nevertheless, genomic characteristics of strain HO-A22T were below the thresholds for species delineation: the calculated average nucleotide identity (ANI) values were 83.7-92.4% (<95%), and digital DNA-DNA hybridization (dDDH) values were within the range of 25.4-45.9% (<70%), which supported our conclusion that HO-A22T (=VKM B-3646T = KCTC 92427T) represented a novel species of the genus Ensifer, with the proposed name Ensifer oleiphilus sp. nov. Strain SHC 2-14 was assigned to the species 'Ensifer canadensis', which has not been validly published. This study expanded the knowledge about the phenotypic diversity among members of the genus Ensifer and its potential for the biotechnologies of oil recovery and radionuclide pollution treatment.

2.
Syst Appl Microbiol ; 46(3): 126406, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36898262

RESUMEN

A spiral-shaped, highly motile bacterium was isolated from freshwater sulfidic sediment. Strain J10T is a facultative autotroph utilizing sulfide, thiosulfate, and sulfur as the electron donors in microoxic conditions. Despite high 16S rRNA gene sequence sequence identity to Magnetospirillum gryphiswaldense MSR-1 T (99.6 %), digital DNA-DNA hybridisation homology and average nucleotide identity between the two strains was of the different species level (25 % and 83 %, respectively). Strain J10T is not magnetotactic. The DNA G + C content of strain J10T is 61.9 %. The predominant phospholipid ester-linked fatty acids are C18:1ω7, C16:1ω7, and C16:0. Strain J10T (=DSM 23205 T = VKM B-3486 T) is the first strain of the genus Magnetospirillum showing lithoautotrophic growth and is proposed here as a novel species, Magnetospirillum sulfuroxidans sp. nov. In addition, we propose to establish a framework for distinguishing genera and families within the order Rhodospirillales based on phylogenomic analysis using the threshold values for average amino acid identity at Ì´ 72 % for genera and Ì´ 60 % for families. According to this, we propose to divide the existing genus Magnetospirillum into three genera: Magnetospirillum, Paramagnetospirillum, and Phaeospirillum, constituting a separate family Magnetospirillaceae fam. nov. in the order Rhodospirillales. Furthermore, phylogenomic data suggest that this order should accomodate six more new family level groups including Magnetospiraceae fam. nov., Magnetovibrionaceae fam. nov., Dongiaceae fam. nov., Niveispirillaceae fam. nov., Fodinicurvataceae fam. nov., and Oceanibaculaceae fam. nov.


Asunto(s)
Magnetospirillum , Magnetospirillum/genética , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Filogenia , Ácidos Grasos/química , Fosfolípidos/química , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana
3.
Syst Appl Microbiol ; 46(3): 126407, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36906934

RESUMEN

A search for the organisms responsible for anaerobic betaine degradation in soda lakes resulted in isolation of a novel bacterial strain, designated Z-7014T. The cells were Gram-stain-negative, non-endospore-forming rods. Growth occurred at 8-52 °C (optimum 40-45 °C), pH 7.1-10.1 (optimum pH 8.1-8.8) and 1.0-3.5 M Na+ (optimum 1.8 M), i.e. it can be regarded as a haloalkaliphile. The strain utilized a limited range of substrates, mostly peptonaceous but not amino acids, and was able to degrade betaine. Growth on betaine occurred only in the presence of peptonaceous substances which could not be replaced by vitamins. The G + C content of the genomic DNA of strain Z-7014T was 36.1 mol%. The major cellular fatty acids (>5% of the total) were C16:0 DMA, C18: 0 DMA, C16:1ω8, C16:0, C18:1 DMA, C16:1 DMA, C18:1ω9, and C18:0. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain Z-7014T formed a distinct evolutionary lineage in the order Halanaerobiales with the highest similarity to Halarsenitibacter silvermanii SLAS-1T (83.6%), Halothermothrix orenii H168T (85.6%), and Halocella cellulosilytica DSM 7362T (85.6%). AAI and POCP values between strain Z-7014T and type strains of the order Halanaerobiales were 51.7-57.8%, and 33.8-58.3%, respectively. Based on polyphasic results including phylogenomic data, the novel strain could be distinguished from other genera, which suggests that strain Z-7014T represents a novel species of a new genus, for which the name Halonatronomonas betaini gen. nov., sp. nov. is proposed. The type strain is Z-7014T (=KCTC 25237T = VKM B-3506T). On the basis of phylogenomic data, it is also proposed to evolve two novel families Halarsenitibacteraceae fam. nov. and Halothermotrichaceae fam. nov. within the current order Halanaerobiales.


Asunto(s)
Bacterias , Lagos , Lagos/microbiología , Bacterias/química , Bacterias/citología , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Betaína/metabolismo , Filogenia , Ácidos Grasos/análisis
4.
Antonie Van Leeuwenhoek ; 116(2): 109-127, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36244039

RESUMEN

Two facultatively anaerobic, chemoorganoheterotrophic bacterial strains, designated JR1/69-2-13T and JR1/69-3-13T, were isolated from nitrate- and radionuclide-contaminated groundwater (Ozyorsk town, South Urals, Russia). Both strains were found to be motile, Gram-stain negative rod-shaped neutrophilic, psychrotolerant bacteria that grow within the temperature range from 5-10 to 33 °C at 0-3 (0-5)% NaCl (w/v). The major cellular fatty acids were identified as C16:0, C16:1 ω7c, C18:1 ω7c and C17:0 cyclo. The major polar lipids were found to consist of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine, phosphatidylglycerol and unidentified aminophospholipids. The genomic G + C content of strains JR1/69-2-13T and JR1/69-3-13T was determined to be 57.2 and 57.9%, respectively. The 16S rRNA gene sequences of the strains showed high similarity between each other (98.6%) and to members of the genera Pusillimonas (96.8-98.4%) and Candidimonas (97.1-98.0%). The average nucleotide identity and digital DNA-DNA hybridization (dDDH) values among genomes of the new isolates and Pusillimonas and Candidimonas genomes were below 84.5 and 28.8%, respectively, i.e., below the thresholds for species delineation. Based on the phylogenomic, phenotypic and chemotaxonomic characterisation, we propose assignment of strains JR1/69-3-13T (= VKM B-3223T = KCTC 62615T) and JR1/69-2-13T (= VKM B-3222T = KCTC 62614T) to a new genus Pollutimonas as the type strains of two new species, Pollutimonas subterranea gen. nov., sp. nov. and Pollutimonas nitritireducens sp. nov., respectively. As a result of the taxonomic revision of the genus Pusillimonas, three novel genera, Allopusillimonas, Neopusillimonas, and Mesopusillimonas are also proposed; and Candidimonas bauzanensis is reclassified as Pollutimonas bauzanensis comb. nov. Genome analysis of the new isolates suggested molecular mechanisms of their adaptation to an environment highly polluted with nitrate and radionuclides.


Asunto(s)
Nitratos , Fosfolípidos , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ácidos Grasos , Filogenia , Hibridación de Ácido Nucleico , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana
5.
Antonie Van Leeuwenhoek ; 116(2): 153-170, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36462112

RESUMEN

Three novel facultatively methylotrophic bacteria, strains 3CT, 1A, 8P, were isolated from activated sludges. The isolates were aerobic, Gram-stain-negative, non-motile, non-spore forming rods multiplying by binary fission. The predominant polar lipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylethylethanolamine, phosphatidylmonomethylethanolamine, and diphosphatidylglycerol. The major fatty acids of cells were С18:1ω7c, C19:0ω8c cyclo and C16:0. Levels of 16S rRNA gene similarity indicates that the closely relatives are representatives of the genera Starkeya, Ancylobacter, Angulomicrobium and Methylorhabdus (96.4-99.4%). Genomic comparisons of 3CT and its closest relatives, S. novella DSM 506T and S. koreensis Jip08T, shared 87.3 and 86.8% nucleotide identity and 28.3 and 26.8% digital DNA-DNA hybridization values, respectively. The average amino acid identities between the strain 3CT and representatives of Starkeya, Ancylobacter and Angulomicrobium were in the range of 75.6-84.3%, which combines these strains into a single genus and gives rise to their reclassification. Based on polyphasic analyses, the strains 3CT, 1A, 8P represents a novel species of the genus Ancylobacter, for which the name Ancylobacter moscoviensis sp. nov. is proposed. The type strain is 3CT (= VKM B-3218T = KCTC 62336T). Furthermore, we also suggested the reclassification of Starkeya novella as Ancylobacter novellus comb. nov., Starkeya koreensis as Ancylobacter koreensis comb. nov., Angulomicrobium tetraedrale as Ancylobacter tetraedralis comb. nov., Angulomicrobium amanitiforme as Ancylobacter amanitiformis comb. nov. and Methylorhabdus multivorans as Ancylobacter multivorans comb. nov. with the emended description of the genus Ancylobacter.


Asunto(s)
Alphaproteobacteria , Aguas del Alcantarillado , ARN Ribosómico 16S/genética , Alphaproteobacteria/genética , Ácidos Grasos/análisis , ADN , Filogenia , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Análisis de Secuencia de ADN , Hibridación de Ácido Nucleico
6.
Nanomaterials (Basel) ; 12(14)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35889709

RESUMEN

Biomimetic nanomaterials (BNMs) are functional materials containing nanoscale components and having structural and technological similarities to natural (biogenic) prototypes. Despite the fact that biomimetic approaches in materials technology have been used since the second half of the 20th century, BNMs are still at the forefront of materials science. This review considered a general classification of such nanomaterials according to the characteristic features of natural analogues that are reproduced in the preparation of BNMs, including biomimetic structure, biomimetic synthesis, and the inclusion of biogenic components. BNMs containing magnetic, metal, or metal oxide organic and ceramic structural elements (including their various combinations) were considered separately. The BNMs under consideration were analyzed according to the declared areas of application, which included tooth and bone reconstruction, magnetic and infrared hyperthermia, chemo- and immunotherapy, the development of new drugs for targeted therapy, antibacterial and anti-inflammatory therapy, and bioimaging. In conclusion, the authors' point of view is given about the prospects for the development of this scientific area associated with the use of native, genetically modified, or completely artificial phospholipid membranes, which allow combining the physicochemical and biological properties of biogenic prototypes with high biocompatibility, economic availability, and scalability of fully synthetic nanomaterials.

8.
Microorganisms ; 10(2)2022 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-35208832

RESUMEN

The goal of the present work was to determine the diversity of prokaryotes involved in anaerobic oil degradation in oil fields. The composition of the anaerobic oil-degrading methanogenic enrichment obtained from an oil reservoir was determined by 16S rRNA-based survey, and the facultatively anaerobic chemoorganotrophic bacterial strain HO-Ch2T was isolated and studied using polyphasic taxonomy approach and genome sequencing. The strain HO-Ch2T grew optimally at 28 °C, pH 8.0, and 1-2% (w/v) NaCl. The 16S rRNA gene sequence of the strain HO-Ch2T had 98.8% similarity with the sequence of Actinotalea ferrariae CF5-4T. The genomic DNA G + C content of strain HO-Ch2T was 73.4%. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the genome of strain HO-Ch2T and Actinotalea genomes were 79.8-82.0% and 20.5-22.2%, respectively, i.e., below the thresholds for species delineation. Based on the phylogenomic, phenotypic, and chemotaxonomic characterization, we propose strain HO-Ch2T (= VKM Ac-2850T = KCTC 49656T) as the type strain of a new species within the genus Actinotalea, with the name Actinotalea subterranea sp. nov. Based on the phylogenomic analysis of 187 genomes of Actinobacteria we propose the taxonomic revision of the genera Actinotalea and Pseudactinotalea and of the family Actinotaleaceae. We also propose the reclassification of Cellulomonas carbonis as Actinotalea carbonis comb. nov., Cellulomonas bogoriensis as Actinotalea bogoriensis comb. nov., Actinotalea caeni as Pseudactinotalea caeni comb. nov., and the transfer of the genus Pseudactinotalea to the family Ruaniaceae of the order Ruaniales.

9.
ISME J ; 16(2): 346-357, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34341504

RESUMEN

The enormous chemical diversity and strain variability of prokaryotic protein glycosylation makes their large-scale exploration exceptionally challenging. Therefore, despite the universal relevance of protein glycosylation across all domains of life, the understanding of their biological significance and the evolutionary forces shaping oligosaccharide structures remains highly limited. Here, we report on a newly established mass binning glycoproteomics approach that establishes the chemical identity of the carbohydrate components and performs untargeted exploration of prokaryotic oligosaccharides from large-scale proteomics data directly. We demonstrate our approach by exploring an enrichment culture of the globally relevant anaerobic ammonium-oxidizing bacterium Ca. Kuenenia stuttgartiensis. By doing so we resolve a remarkable array of oligosaccharides, which are produced by two seemingly unrelated biosynthetic routes, and which modify the same surface-layer protein simultaneously. More intriguingly, the investigated strain also accomplished modulation of highly specialized sugars, supposedly in response to its energy metabolism-the anaerobic oxidation of ammonium-which depends on the acquisition of substrates of opposite charges. Ultimately, we provide a systematic approach for the compositional exploration of prokaryotic protein glycosylation, and reveal a remarkable example for the evolution of complex oligosaccharides in bacteria.


Asunto(s)
Compuestos de Amonio , Oxidación Anaeróbica del Amoníaco , Compuestos de Amonio/metabolismo , Anaerobiosis , Bacterias/metabolismo , Glicosilación , Oxidación-Reducción
10.
Int J Syst Evol Microbiol ; 71(12)2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34913862

RESUMEN

A novel species is proposed for a high-affinity methanotrophic representative of the genus Methylocystis. Strain FST was isolated from a weakly acidic (pH 5.3) mixed forest soil of the southern Moscow area. Cells of FST are aerobic, Gram-negative, non-motile, curved coccoids or short rods that contain an intracytoplasmic membrane system typical of type-II methanotrophs. Only methane and methanol are used as carbon sources. FST grew at a temperature range of 4-37 °C (optimum 25-30 °C) and a pH range of 4.5 to 7.5 (optimum pH 6.0-6.5). The major fatty acids were C18  :  1ω8c, C18  :  1ω7c and C18  :  0; the major quinone as Q-8. FST displays 16S rRNA gene sequences similarity to other taxonomically recognized members of the genus Methylocystis, with Methylocystis hirsuta CSC1T (99.6 % similarity) and Methylocystis rosea SV97T (99.3 % similarity) as its closest relatives. The genome comprises 3.85 Mbp and has a DNA G+C content of 62.6 mol%. Genomic analyses and DNA-DNA relatedness with genome-sequenced members of the genus Methylocystis demonstrated that FST could be separated from its closest relatives. FST possesses two particulate methane monooxygenases (pMMO): low-affinity pMMO1 and high-affinity pMMO2. In laboratory experiments, it was demonstrated that FST might oxidize methane at atmospheric concentration. The genome contained various genes for nitrogen fixation, polyhydroxybutyrate synthesis, antibiotic resistance and detoxification of arsenic, cyanide and mercury. On the basis of genotypic, phenotypic and chemotaxonomic characteristics, it is proposed that the isolate represents a novel species, Methylocystis silviterrae sp. nov. The type strain is FST (=KCTC 82935T=VKM B-3535T).


Asunto(s)
Methylocystaceae , Filogenia , Microbiología del Suelo , Taiga , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Methylocystaceae/clasificación , Methylocystaceae/aislamiento & purificación , Moscú , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/química
11.
Microorganisms ; 9(9)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34576714

RESUMEN

Application of seawater for secondary oil recovery stimulates the development of sulfidogenic bacteria in the oil field leading to microbially influenced corrosion of steel equipment, oil souring, and environmental issues. The aim of this work was to investigate potential sulfide producers in the high-temperature Uzen oil field (Republic of Kazakhstan) exploited with seawater flooding and the possibility of suppressing growth of sulfidogens in both planktonic and biofilm forms. Approaches used in the study included 16S rRNA and dsrAB gene sequencing, scanning electron microscopy, and culture-based techniques. Thermophilic hydrogenotrophic methanogens of the genus Methanothermococcus (phylum Euryarchaeota) predominated in water from the zone not affected by seawater flooding. Methanogens were accompanied by fermentative bacteria of the genera Thermovirga, Defliviitoga, Geotoga, and Thermosipho (phylum Thermotogae), which are potential thiosulfate- or/and sulfur-reducers. In the sulfate- and sulfide-rich formation water, the share of Desulfonauticus sulfate-reducing bacteria (SRB) increased. Thermodesulforhabdus, Thermodesulfobacterium, Desulfotomaculum, Desulfovibrio, and Desulfoglaeba were also detected. Mesophilic denitrifying bacteria of the genera Marinobacter, Halomonas, and Pelobacter inhabited the near-bottom zone of injection wells. Nitrate did not suppress sulfidogenesis in mesophilic enrichments because denitrifiers reduced nitrate to dinitrogen; however, thermophilic denitrifiers produced nitrite, an inhibitor of SRB. Enrichments and a pure culture Desulfovibrio alaskensis Kaz19 formed biofilms highly resistant to biocides. Our results suggest that seawater injection and temperature of the environment determine the composition and functional activity of prokaryotes in the Uzen oil field.

12.
Microorganisms ; 9(9)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34576748

RESUMEN

In this study, the magnetic properties of magnetosomes isolated from lyophilized magnetotactic bacteria Magnetospirillum caucaseum SO-1 were assessed for the first time. The shape and size of magnetosomes and cell fragments were studied by electron microscopy and dynamic light scattering techniques. Phase and elemental composition were analyzed by X-ray and electron diffraction and Raman spectroscopy. Magnetic properties were studied using vibrating sample magnetometry and electron paramagnetic resonance spectroscopy. Theoretical analysis of the magnetic properties was carried out using the model of clusters of magnetostatically interacting two-phase particles and a modified method of moments for a system of dipole-dipole-interacting uniaxial particles. Magnetic properties were controlled mostly by random aggregates of magnetosomes, with a minor contribution from preserved magnetosome chains. Results confirmed the high chemical stability and homogeneity of bacterial magnetosomes in comparison to synthetic iron oxide magnetic nanoparticles.

13.
FEMS Microbiol Lett ; 368(16)2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34390245

RESUMEN

A mesophilic filamentous anoxygenic phototrophic bacterium, designated M50-1, was isolated from a microbial mat of the Chukhyn Nur soda lake (northeastern Mongolia) with salinity of 5-14 g/L and pH 8.0-9.3. The organism is a strictly anaerobic phototrophic bacterium, which required sulfide for phototrophic growth. The cells formed short undulate trichomes surrounded by a thin sheath and containing gas vesicles. Motility of the trichomes was not observed. The cells contained chlorosomes. The antenna pigments were bacteriochlorophyll d and ß- and γ-carotenes. Analysis of the genome assembled from the metagenome of the enrichment culture revealed all the enzymes of the 3-hydroxypropionate bi-cycle for autotrophic CO2 assimilation. The genome also contained the genes encoding a type IV sulfide:quinone oxidoreductase (sqrX). The organism had no nifHDBK genes, encoding the proteins of the nitrogenase complex responsible for dinitrogen fixation. The DNA G + C content was 58.6%. The values for in silico DNA‒DNA hybridization and average nucleotide identity between M50-1 and a closely related bacterium 'Ca. Chloroploca asiatica' B7-9 containing bacteriochlorophyll c were 53.4% and 94.0%, respectively, which corresponds to interspecies differences. Classification of the filamentous anoxygenic phototrophic bacterium M50-1 as a new 'Ca. Chloroploca' species was proposed, with the species name 'Candidatus Chloroploca mongolica' sp. nov.


Asunto(s)
Bacterias Anaerobias , Chloroflexi , Bacterias Anaerobias/clasificación , Bacterias Anaerobias/genética , Chloroflexi/clasificación , Chloroflexi/genética , Filogenia , ARN Ribosómico 16S/genética , Especificidad de la Especie , Sulfuros/metabolismo
14.
Artículo en Inglés | MEDLINE | ID: mdl-34410902

RESUMEN

A novel, aerobic nitrogen-fixing methylotrophic bacterium, strain 29kT, was enriched and isolated from sludge generated during wastewater treatment at a paper mill in Baikal, Russian Federation. Cells were Gram-stain-variable. The cell wall was of the negative Gram-type. Cells were curved oval rod-shaped, 0.5-0.7×1.7-3.4 µm and formed yellow-coloured colonies. Cells tended to be pleomorphic if grown on media containing succinate or coccoid if grown in the presence of methyl alcohol as the sole carbon source. Cells were non-motile, non-spore-forming and contained retractile (polyphosphate) and lipid (poly-ß-hydroxybutyrate) bodies. The major respiratory quinone was ubiquinone Q-10 and the predominant cellular fatty acids were C18:1 ω7, C19:0 cyclo and C16:0. The genomic DNA G+C content was 67.95 mol%. Strain 29kT was able to grow at 4-37 °C (optimum, 30 °C), at pH 6.0-8.5 (optimum, pH 6.5-7.0) and at salinities of 0-0.5% (w/v) NaCl (optimum, 0% NaCl). Catalase and oxidase were positive. Strain 29kT could grow chemolithoautotrophically in mineral media under an atmosphere of H2, O2 and CO2 as well as chemoorganoheterotrophically on methanol, ethanol, n-propanol, n-butanol and various organic acids. The carbohydrate utilization spectrum is limited by glucose and raffinose. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the newly isolated strain was a member of the genus Xanthobacter with Xanthobacter autotrophicus 7cT (99.9% similarity) and Xanthobacter viscosus 7dT (99.4 % similarity) as closest relatives among species with validly published names. The average nucleotide identity and digital DNA-DNA hybridization values of 92.7 and 44.9%, respectively, of the 29kT to the genome of the most closely related species, X. autotrophicus 7cT, were below the species cutoffs. Based on genotypic, phenotypic and chemotaxonomic characteristics, it is proposed that the isolate represents a novel species, Xanthobacter oligotrophicus sp. nov. The type strain is 29kT (=KCTC 72777T=VKM B-3453T).


Asunto(s)
Filogenia , Aguas del Alcantarillado , Xanthobacter , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Pigmentación , ARN Ribosómico 16S/genética , Federación de Rusia , Análisis de Secuencia de ADN , Aguas del Alcantarillado/microbiología , Ubiquinona/análogos & derivados , Ubiquinona/química , Xanthobacter/clasificación , Xanthobacter/aislamiento & purificación
15.
Carbohydr Res ; 504: 108306, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33930760

RESUMEN

O-polysaccharide (O-antigen, OPS) was isolated from the lipopolysaccharide of Pseudomonas veronii SHC-8-1 and studied by component analyses and 1D and 2D NMR spectroscopy. The following structure of the O-polysaccharide was established: where QuipNAc4N(dHh) is 2,4-diamino-2,4,6-trideoxy-dglucose (Bacillosamine) in which N-2 is acetylated and N-4 is acylated with 3,5-dihydroxyhexanoic acid (dHh). The O-antigen gene cluster of Pseudomonas veronii SHC-8-1 has been sequenced. The gene functions were tentatively assigned by comparison with sequences in the available databases and found to be in agreement with the OPS structure.


Asunto(s)
Antígenos O , Pseudomonas , Familia de Multigenes
16.
Microorganisms ; 8(12)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322329

RESUMEN

A methanogenic enrichment growing on a medium with methanol was obtained from a petroleum reservoir (Republic of Azerbaijan) and stored for 33 years without transfers to fresh medium. High-throughput sequencing of the V4 region of the 16S rRNA gene revealed members of the genera Desulfovibrio, Soehngenia, Thermovirga, Petrimonas, Methanosarcina, and Methanomethylovorans. A novel gram-positive, rod-shaped, anaerobic fermentative bacterium, strain 1933PT, was isolated from this enrichment and characterized. The strain grew at 13-55 °C (optimum 35 °C), with 0-3.0% (w/v) NaCl (optimum 0-2.0%) and in the pH range of 6.7-8.0 (optimum pH 7.0). The 16S rRNA gene sequence similarity, the average nucleotide identity (ANI) and in silico DNA-DNA hybridization (dDDH) values between strain 1933PT and the type strain of the most closely related species Soehngenia saccharolytica DSM 12858T were 98.5%, 70.5%, and 22.6%, respectively, and were below the threshold accepted for species demarcation. Genome-based phylogenomic analysis and physiological and biochemical characterization of the strain 1933PT (VKM B-3382T = KCTC 15984T) confirmed its affiliation to a novel species of the genus Soehngenia, for which the name Soehngenia longivitae sp. nov. is proposed. Genome analysis suggests that the new strain has potential in the degradation of proteinaceous components.

17.
Microbiol Resour Announc ; 9(48)2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33239468

RESUMEN

The draft genome sequence of a moderately halophilic bacterium, Halomonas titanicae strain TAT1, isolated from production water of the Romashkinskoe oilfield (Russia) is presented. The genome is annotated for elucidation of the metabolic pathways involved in hydrocarbon degradation and nitrate reduction in petroleum-contaminated hypersaline environments.

18.
Int J Biol Macromol ; 165(Pt B): 2197-2204, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33058985

RESUMEN

A denitrifying bacterium Pseudomonas veronii A-6-5 was isolated from a deep aquifer contaminated with nitrates and uranium. The O-polysaccharide (OPS) was isolated by mild acid degradation of the lipopolysaccharide of P. veronii A-6-5 and studied using sugar analysis and 1D and 2D 1H and 13C NMR spectroscopy. The trisaccharide O-repeating unit was found to have the following structure: [Formula: see text] [Formula: see text] where Hb is 3-hydroxybutanoyl. The genome of P. veronii A-6-5 was sequenced and a respective OPS gene cluster was identified. Functions of the proteins encoded in the gene cluster, including the enzymes involved in the O-polysaccharide biosynthesis and glycosyl transferases, were putatively assigned by comparison with available database sequences. Formation of a new coordination bond between uranyl and the O-polysaccharide from P. veronii A-6-5 was demonstrated using FTIR spectroscopy; it may affect uranyl migration in the groundwaters due to its immobilization on microbial biofilms. Applied importance of this work is that the structure of the O-polysaccharide of a strain isolated from uranium-contaminated groundwater was determined and the character of interaction between the polysaccharide and the uranyl ion was established. The data obtained are of importance for development of the biotechnologies for treatment of uranium-contaminated groundwater and activated sludge.


Asunto(s)
Familia de Multigenes , Antígenos O/química , Antígenos O/genética , Pseudomonas/química , Uranio/aislamiento & purificación , Biodegradación Ambiental , Espectroscopía de Resonancia Magnética con Carbono-13 , Genoma Bacteriano , Conformación Molecular , Monosacáridos/química , Espectroscopía de Protones por Resonancia Magnética , Pseudomonas/genética , Espectroscopía Infrarroja por Transformada de Fourier , Uranio/química
19.
FEMS Microbiol Lett ; 367(19)2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33016309

RESUMEN

Chloroflexales bacteria are mostly known as filamentous anoxygenic phototrophs that thrive as members of the microbial communities of hot spring cyanobacterial mats. Recently, we described many new Chloroflexales species from non-thermal environments and showed that mesophilic Chloroflexales are more diverse than previously expected. Most of these species were isolated from aquatic environments of mid-latitudes. Here, we present the comprehensive characterization of a new filamentous multicellular anoxygenic phototrophic Chloroflexales bacterium from an Arctic coastal environment (Kandalaksha Gulf, the White Sea). Phylogenomic analysis and 16S rRNA phylogeny indicated that this bacterium belongs to the Oscillochloridaceae family as a new species. We propose that this species be named 'Candidatus Oscillochloris kuznetsovii'. The genomes of this species possessed genes encoding sulfide:quinone reductase, the nitrogenase complex and the Calvin cycle, which indicate potential for photoautotrophic metabolism. We observed only mesophilic anaerobic anoxygenic phototrophic growth of this novel bacterium. Electron microphotography showed the presence of chlorosomes, polyhydroxyalkanoate-like granules and polyphosphate-like granules in the cells. High-performance liquid chromatography also revealed the presence of bacteriochlorophylls a, c and d as well as carotenoids. In addition, we found that this bacterium is present in benthic microbial communities of various coastal environments of the Kandalaksha Gulf.


Asunto(s)
Chloroflexi/clasificación , Regiones Árticas , Chloroflexi/genética , Chloroflexi/metabolismo , Ambiente , Procesos Fototróficos , Filogenia , ARN Ribosómico 16S/genética , Especificidad de la Especie
20.
Front Microbiol ; 11: 1373, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32670237

RESUMEN

The cell biology of Chloroflexota is poorly studied. We applied cryo-focused ion beam milling and cryo-electron tomography to study the ultrastructural organization of thermophilic Roseiflexus castenholzii and Chloroflexus aggregans, and mesophilic "Ca. Viridilinea mediisalina." These species represent the three main lineages within a group of multicellular filamentous anoxygenic phototrophic Chloroflexota bacteria belonging to the Chloroflexales order. We found surprising structural complexity in the Chloroflexales. As with filamentous cyanobacteria, cells of C. aggregans and "Ca. Viridilinea mediisalina" share the outer membrane-like layers of their intricate multilayer cell envelope. Additionally, cells of R. castenholzii and "Ca. Viridilinea mediisalina" are connected by septal channels that resemble cyanobacterial septal junctions. All three strains possess long pili anchored close to cell-to-cell junctions, a morphological feature comparable to that observed in cyanobacteria. The cytoplasm of the Chloroflexales bacteria is crowded with intracellular organelles such as different types of storage granules, membrane vesicles, chlorosomes, gas vesicles, chemoreceptor-like arrays, and cytoplasmic filaments. We observed a higher level of complexity in the mesophilic strain compared to the thermophilic strains with regards to the composition of intracellular bodies and the organization of the cell envelope. The ultrastructural details that we describe in these Chloroflexales bacteria will motivate further cell biological studies, given that the function and evolution of the many discovered morphological traits remain enigmatic in this diverse and widespread bacterial group.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...