Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(3): 113942, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38489266

RESUMEN

Tumor-associated macrophages (TAMs) shape tumor immunity and therapeutic efficacy. However, it is poorly understood whether and how post-translational modifications (PTMs) intrinsically affect the phenotype and function of TAMs. Here, we reveal that peptidylarginine deiminase 4 (PAD4) exhibits the highest expression among common PTM enzymes in TAMs and negatively correlates with the clinical response to immune checkpoint blockade. Genetic and pharmacological inhibition of PAD4 in macrophages prevents tumor progression in tumor-bearing mouse models, accompanied by an increase in macrophage major histocompatibility complex (MHC) class II expression and T cell effector function. Mechanistically, PAD4 citrullinates STAT1 at arginine 121, thereby promoting the interaction between STAT1 and protein inhibitor of activated STAT1 (PIAS1), and the loss of PAD4 abolishes this interaction, ablating the inhibitory role of PIAS1 in the expression of MHC class II machinery in macrophages and enhancing T cell activation. Thus, the PAD4-STAT1-PIAS1 axis is an immune restriction mechanism in macrophages and may serve as a cancer immunotherapy target.


Asunto(s)
Hidrolasas , Procesamiento Proteico-Postraduccional , Ratones , Animales , Desiminasas de la Arginina Proteica/metabolismo , Arginina Deiminasa Proteína-Tipo 4/genética , Arginina Deiminasa Proteína-Tipo 4/metabolismo , Hidrolasas/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo , Macrófagos/metabolismo
2.
bioRxiv ; 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38464258

RESUMEN

The modern armamentarium for cancer treatment includes immunotherapy and targeted therapy, such as protein kinase inhibitors. However, the mechanisms that allow cancer-targeting drugs to effectively mobilize dendritic cells (DCs) and affect immunotherapy are poorly understood. Here, we report that among shared gene targets of clinically relevant protein kinase inhibitors, high PIKFYVE expression was least predictive of complete response in patients who received immune checkpoint blockade (ICB). In immune cells, high PIKFYVE expression in DCs was associated with worse response to ICB. Genetic and pharmacological studies demonstrated that PIKfyve ablation enhanced DC function via selectively altering the alternate/non-canonical NF-κB pathway. Both loss of Pikfyve in DCs and treatment with apilimod, a potent and specific PIKfyve inhibitor, restrained tumor growth, enhanced DC-dependent T cell immunity, and potentiated ICB efficacy in tumor-bearing mouse models. Furthermore, the combination of a vaccine adjuvant and apilimod reduced tumor progression in vivo. Thus, PIKfyve negatively controls DCs, and PIKfyve inhibition has promise for cancer immunotherapy and vaccine treatment strategies.

3.
Proc Natl Acad Sci U S A ; 120(49): e2314416120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38011559

RESUMEN

Despite the remarkable clinical success of immunotherapies in a subset of cancer patients, many fail to respond to treatment and exhibit resistance. Here, we found that genetic or pharmacologic inhibition of the lipid kinase PIKfyve, a regulator of autophagic flux and lysosomal biogenesis, upregulated surface expression of major histocompatibility complex class I (MHC-I) in cancer cells via impairing autophagic flux, resulting in enhanced cancer cell killing mediated by CD8+ T cells. Genetic depletion or pharmacologic inhibition of PIKfyve elevated tumor-specific MHC-I surface expression, increased intratumoral functional CD8+ T cells, and slowed tumor progression in multiple syngeneic mouse models. Importantly, enhanced antitumor responses by Pikfyve-depletion were CD8+ T cell- and MHC-I-dependent, as CD8+ T cell depletion or B2m knockout rescued tumor growth. Furthermore, PIKfyve inhibition improved response to immune checkpoint blockade (ICB), adoptive cell therapy, and a therapeutic vaccine. High expression of PIKFYVE was also predictive of poor response to ICB and prognostic of poor survival in ICB-treated cohorts. Collectively, our findings show that targeting PIKfyve enhances immunotherapies by elevating surface expression of MHC-I in cancer cells, and PIKfyve inhibitors have potential as agents to increase immunotherapy response in cancer patients.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Ratones , Animales , Humanos , Genes MHC Clase I , Antígenos de Histocompatibilidad Clase I , Inmunoterapia/métodos , Lípidos , Neoplasias/genética , Neoplasias/terapia
4.
Cancer Cell ; 41(2): 304-322.e7, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36638784

RESUMEN

Immune checkpoint blockade (ICB) can produce durable responses against cancer. We and others have found that a subset of patients experiences paradoxical rapid cancer progression during immunotherapy. It is poorly understood how tumors can accelerate their progression during ICB. In some preclinical models, ICB causes hyperprogressive disease (HPD). While immune exclusion drives resistance to ICB, counterintuitively, patients with HPD and complete response (CR) following ICB manifest comparable levels of tumor-infiltrating CD8+ T cells and interferon γ (IFNγ) gene signature. Interestingly, patients with HPD but not CR exhibit elevated tumoral fibroblast growth factor 2 (FGF2) and ß-catenin signaling. In animal models, T cell-derived IFNγ promotes tumor FGF2 signaling, thereby suppressing PKM2 activity and decreasing NAD+, resulting in reduction of SIRT1-mediated ß-catenin deacetylation and enhanced ß-catenin acetylation, consequently reprograming tumor stemness. Targeting the IFNγ-PKM2-ß-catenin axis prevents HPD in preclinical models. Thus, the crosstalk of core immunogenic, metabolic, and oncogenic pathways via the IFNγ-PKM2-ß-catenin cascade underlies ICB-associated HPD.


Asunto(s)
Neoplasias , beta Catenina , Animales , Linfocitos T CD8-positivos , Factor 2 de Crecimiento de Fibroblastos , Neoplasias/terapia , Neoplasias/patología , Progresión de la Enfermedad , Interferón gamma , Inmunoterapia/métodos
5.
Oncoimmunology ; 11(1): 2052640, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35309733

RESUMEN

Chronic inflammation and oncogenic pathway activation are key-contributing factors in colorectal cancer pathogenesis. However, colorectal intrinsic mechanisms linking these two factors in cancer development are poorly defined. Here, we show that intestinal epithelial cell (IEC)-specific deletion of Dot1l histone methyltransferase (Dot1lΔIEC ) reduced H3K79 dimethylation (H3K79me2) in IECs and inhibited intestinal tumor formation in ApcMin - and AOM-DSS-induced colorectal cancer models. IEC-Dot1l abrogation was accompanied by alleviative colorectal inflammation and reduced Wnt/ß-catenin signaling activation. Mechanistically, Dot1l deficiency resulted in an increase in Foxp3+RORϒ+ regulatory T (Treg) cells and a decrease in inflammatory Th17 and Th22 cells, thereby reducing local inflammation in the intestinal tumor microenvironment. Furthermore, Dot1l deficiency caused a reduction of H3K79me2 occupancies in the promoters of the Wnt/ß-catenin signaling genes, thereby diminishing Wnt/ß-catenin oncogenic signaling pathway activation in colorectal cancer cells. Clinically, high levels of tumor H3K79me2 were detected in patients with colorectal carcinomas as compared to adenomas, and negatively correlated with RORϒ+FOXP3+ Treg cells. Altogether, we conclude that DOT1L is an intrinsic molecular node connecting chronic immune activation and oncogenic signaling pathways in colorectal cancer. Our work suggests that targeting the DOT1L pathway may control colorectal carcinogenesis. Significance: IEC-intrinsic DOT1L controls T cell subset balance and key oncogenic pathway activation, impacting colorectal carcinogenesis.


Asunto(s)
Neoplasias Colorrectales , N-Metiltransferasa de Histona-Lisina , Subgrupos de Linfocitos T , Carcinogénesis/metabolismo , Neoplasias Colorrectales/patología , Factores de Transcripción Forkhead/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Inflamación , Subgrupos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/patología , Microambiente Tumoral , Vía de Señalización Wnt , beta Catenina/genética , beta Catenina/metabolismo
6.
Cancer Cell ; 40(4): 365-378.e6, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35216678

RESUMEN

Tumor cell intrinsic ferroptosis-initiating mechanisms are unknown. Here, we discover that T cell-derived interferon (IFN)γ in combination with arachidonic acid (AA) induces immunogenic tumor ferroptosis, serving as a mode of action for CD8+ T cell (CTL)-mediated tumor killing. Mechanistically, IFNγ stimulates ACSL4 and alters tumor cell lipid pattern, thereby increasing incorporations of AA into C16 and C18 acyl chain-containing phospholipids. Palmitoleic acid and oleic acid, two common C16 and C18 fatty acids in blood, promote ACSL4-dependent tumor ferroptosis induced by IFNγ plus AA. Moreover, tumor ACSL4 deficiency accelerates tumor progression. Low-dose AA enhances tumor ferroptosis and elevates spontaneous and immune checkpoint blockade (ICB)-induced anti-tumor immunity. Clinically, tumor ACSL4 correlates with T cell signatures and improved survival in ICB-treated cancer patients. Thus, IFNγ signaling paired with selective fatty acids is a natural tumor ferroptosis-promoting mechanism and a mode of action of CTLs. Targeting the ACSL4 pathway is a potential anti-cancer approach.


Asunto(s)
Ferroptosis , Neoplasias , Linfocitos T CD8-positivos/metabolismo , Coenzima A Ligasas/metabolismo , Ácidos Grasos , Humanos
7.
Nat Cell Biol ; 23(5): 526-537, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33958760

RESUMEN

Major histocompatibility complex-I (MHC-I) presents tumour antigens to CD8+ T cells and triggers anti-tumour immunity. Humans may have 30,000-60,000 long noncoding RNAs (lncRNAs). However, it remains poorly understood whether lncRNAs affect tumour immunity. Here, we identify a lncRNA, lncRNA inducing MHC-I and immunogenicity of tumour (LIMIT), in humans and mice. We found that IFNγ stimulated LIMIT, LIMIT cis-activated the guanylate-binding protein (GBP) gene cluster and GBPs disrupted the association between HSP90 and heat shock factor-1 (HSF1), thereby resulting in HSF1 activation and transcription of MHC-I machinery, but not PD-L1. RNA-guided CRISPR activation of LIMIT boosted GBPs and MHC-I, and potentiated tumour immunogenicity and checkpoint therapy. Silencing LIMIT, GBPs and/or HSF1 diminished MHC-I, impaired antitumour immunity and blunted immunotherapy efficacy. Clinically, LIMIT, GBP- and HSF1-signalling transcripts and proteins correlated with MHC-I, tumour-infiltrating T cells and checkpoint blockade response in patients with cancer. Together, we demonstrate that LIMIT is a cancer immunogenic lncRNA and the LIMIT-GBP-HSF1 axis may be targetable for cancer immunotherapy.


Asunto(s)
Inmunoterapia , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , ARN Largo no Codificante/genética , Antígenos de Neoplasias/inmunología , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Inmunoterapia/métodos , Neoplasias/inmunología , Transducción de Señal/fisiología
8.
Nat Immunol ; 22(4): 460-470, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33767425

RESUMEN

Targeting the p53-MDM2 pathway to reactivate tumor p53 is a chemotherapeutic approach. However, the involvement of this pathway in CD8+ T cell-mediated antitumor immunity is unknown. Here, we report that mice with MDM2 deficiency in T cells exhibit accelerated tumor progression and a decrease in tumor-infiltrating CD8+ T cell survival and function. Mechanistically, MDM2 competes with c-Cbl for STAT5 binding, reduces c-Cbl-mediated STAT5 degradation and enhances STAT5 stability in tumor-infiltrating CD8+ T cells. Targeting the p53-MDM2 interaction with a pharmacological agent, APG-115, augmented MDM2 in T cells, thereby stabilizing STAT5, boosting T cell immunity and synergizing with cancer immunotherapy. Unexpectedly, these effects of APG-115 were dependent on p53 and MDM2 in T cells. Clinically, MDM2 abundance correlated with T cell function and interferon-γ signature in patients with cancer. Thus, the p53-MDM2 pathway controls T cell immunity, and targeting this pathway may treat patients with cancer regardless of tumor p53 status.


Asunto(s)
Linfocitos T CD8-positivos/enzimología , Linfocitos Infiltrantes de Tumor/enzimología , Neoplasias/enzimología , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Factor de Transcripción STAT5/metabolismo , Animales , Antineoplásicos/farmacología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/trasplante , Línea Celular Tumoral , Terapia Combinada , Femenino , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Inmunoterapia Adoptiva , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/trasplante , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/terapia , Estabilidad Proteica , Proteolisis , Proteínas Proto-Oncogénicas c-mdm2/genética , Factor de Transcripción STAT5/genética , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
9.
Cancer Discov ; 11(7): 1826-1843, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33627378

RESUMEN

Mutations in IFN and MHC signaling genes endow immunotherapy resistance. Patients with colorectal cancer infrequently exhibit IFN and MHC signaling gene mutations and are generally resistant to immunotherapy. In exploring the integrity of IFN and MHC signaling in colorectal cancer, we found that optineurin was a shared node between the two pathways and predicted colorectal cancer patient outcome. Loss of optineurin occurs in early-stage human colorectal cancer. Immunologically, optineurin deficiency was shown to attenuate IFNGR1 and MHC-I expression, impair T-cell immunity, and diminish immunotherapy efficacy in murine cancer models and patients with cancer. Mechanistically, we observed that IFNGR1 was S-palmitoylated on Cys122, and AP3D1 bound with and sorted palmitoylated IFNGR1 to lysosome for degradation. Unexpectedly, optineurin interacted with AP3D1 to prevent palmitoylated IFNGR1 lysosomal sorting and degradation, thereby maintaining IFNγ and MHC-I signaling integrity. Furthermore, pharmacologically targeting IFNGR1 palmitoylation stabilized IFNGR1, augmented tumor immunity, and sensitized checkpoint therapy. Thus, loss of optineurin drives immune evasion and intrinsic immunotherapy resistance in colorectal cancer. SIGNIFICANCE: Loss of optineurin impairs the integrity of both IFNγ and MHC-I signaling pathways via palmitoylation-dependent IFNGR1 lysosomal sorting and degradation, thereby driving immune evasion and intrinsic immunotherapy resistance in colorectal cancer. Our work suggests that pharmacologically targeting IFNGR1 palmitoylation can stabilize IFNGR1, enhance T-cell immunity, and sensitize checkpoint therapy in colorectal cancer.See related commentary by Salvagno and Cubillos-Ruiz, p. 1623.This article is highlighted in the In This Issue feature, p. 1601.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Neoplasias Colorrectales/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Receptores de Interferón/metabolismo , Animales , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/terapia , Femenino , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Interferón gamma/metabolismo , Lipoilación , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Transporte de Proteínas , Organismos Libres de Patógenos Específicos , Receptor de Interferón gamma
10.
Cancer Cell ; 39(4): 480-493.e6, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33513345

RESUMEN

Immunotherapy induces durable clinical responses in a fraction of patients with cancer. However, therapeutic resistance poses a major challenge to current immunotherapies. Here, we identify that expression of tumor stanniocalcin 1 (STC1) correlates with immunotherapy efficacy and is negatively associated with patient survival across diverse cancer types. Gain- and loss-of-function experiments demonstrate that tumor STC1 supports tumor progression and enables tumor resistance to checkpoint blockade in murine tumor models. Mechanistically, tumor STC1 interacts with calreticulin (CRT), an "eat-me" signal, and minimizes CRT membrane exposure, thereby abrogating membrane CRT-directed phagocytosis by antigen-presenting cells (APCs), including macrophages and dendritic cells. Consequently, this impairs APC capacity of antigen presentation and T cell activation. Thus, tumor STC1 inhibits APC phagocytosis and contributes to tumor immune evasion and immunotherapy resistance. We suggest that STC1 is a previously unappreciated phagocytosis checkpoint and targeting STC1 and its interaction with CRT may sensitize to cancer immunotherapy.


Asunto(s)
Glicoproteínas/metabolismo , Activación de Linfocitos/inmunología , Macrófagos/inmunología , Fagocitosis/inmunología , Escape del Tumor/inmunología , Animales , Presentación de Antígeno/inmunología , Inmunoterapia/métodos , Macrófagos/metabolismo , Ratones , Fagocitosis/efectos de los fármacos , Receptores Inmunológicos/inmunología
11.
Nature ; 585(7824): 277-282, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32879489

RESUMEN

Abnormal epigenetic patterns correlate with effector T cell malfunction in tumours1-4, but the cause of this link is unknown. Here we show that tumour cells disrupt methionine metabolism in CD8+ T cells, thereby lowering intracellular levels of methionine and the methyl donor S-adenosylmethionine (SAM) and resulting in loss of dimethylation at lysine 79 of histone H3 (H3K79me2). Loss of H3K79me2 led to low expression of STAT5 and impaired T cell immunity. Mechanistically, tumour cells avidly consumed methionine and outcompeted T cells for methionine by expressing high levels of the methionine transporter SLC43A2. Genetic and biochemical inhibition of tumour SLC43A2 restored H3K79me2 in T cells, thereby boosting spontaneous and checkpoint-induced tumour immunity. Moreover, methionine supplementation improved the expression of H3K79me2 and STAT5 in T cells, and this was accompanied by increased T cell immunity in tumour-bearing mice and patients with colon cancer. Clinically, tumour SLC43A2 correlated negatively with T cell histone methylation and functional gene signatures. Our results identify a mechanistic connection between methionine metabolism, histone patterns, and T cell immunity in the tumour microenvironment. Thus, cancer methionine consumption is an immune evasion mechanism, and targeting cancer methionine signalling may provide an immunotherapeutic approach.


Asunto(s)
Sistema de Transporte de Aminoácidos L/metabolismo , Linfocitos T CD8-positivos/metabolismo , Histonas/metabolismo , Metionina/metabolismo , Metilación , Neoplasias/metabolismo , Sistema de Transporte de Aminoácidos L/deficiencia , Animales , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Epigénesis Genética , Femenino , Histonas/química , Humanos , Ratones , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , Receptores de Antígenos de Linfocitos T/metabolismo , Factor de Transcripción STAT5/metabolismo
12.
JCI Insight ; 5(18)2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32780724

RESUMEN

Tumor-associated macrophages (TAMs) affect cancer progression and therapy. Ovarian carcinoma often metastasizes to the peritoneal cavity. Here, we found 2 peritoneal macrophage subsets in mice bearing ID8 ovarian cancer based on T cell immunoglobulin and mucin domain containing 4 (Tim-4) expression. Tim-4+ TAMs were embryonically originated and locally sustained while Tim-4- TAMs were replenished from circulating monocytes. Tim-4+ TAMs, but not Tim-4- TAMs, promoted tumor growth in vivo. Relative to Tim-4- TAMs, Tim-4+ TAMs manifested high oxidative phosphorylation and adapted mitophagy to alleviate oxidative stress. High levels of arginase-1 in Tim-4+ TAMs contributed to potent mitophagy activities via weakened mTORC1 activation due to low arginine resultant from arginase-1-mediated metabolism. Furthermore, genetic deficiency of autophagy element FAK family-interacting protein of 200 kDa resulted in Tim-4+ TAM loss via ROS-mediated apoptosis and elevated T cell immunity and ID8 tumor inhibition in vivo. Moreover, human ovarian cancer-associated macrophages positive for complement receptor of the immunoglobulin superfamily (CRIg) were transcriptionally, metabolically, and functionally similar to murine Tim-4+ TAMs. Thus, targeting CRIg+ (Tim-4+) TAMs may potentially treat patients with ovarian cancer with peritoneal metastasis.


Asunto(s)
Autofagia , Macrófagos Peritoneales/patología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Neoplasias Ováricas/patología , Estrés Oxidativo , Neoplasias Peritoneales/secundario , Adaptación Fisiológica , Animales , Proteínas Relacionadas con la Autofagia/fisiología , Femenino , Humanos , Antígenos Comunes de Leucocito/fisiología , Macrófagos Peritoneales/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias Ováricas/metabolismo , Neoplasias Peritoneales/metabolismo , Receptores CCR2/fisiología
13.
Ecol Appl ; 29(3): e01867, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30710404

RESUMEN

Reforestation is challenging when timber harvested areas have been degraded, invaded by nonnative species, or are of marginal suitability to begin with. Conifers form mutualistic partnerships with ectomycorrhizal fungi (EMF) to obtain greater access to soil resources, and these partnerships may be especially important in degraded areas. However, timber harvest can impact mycorrhizal fungi by removing or compacting topsoil, removing host plants, and warming and drying the soil. We used a field experiment to evaluate the role of EMF in Douglas-fir reforestation in clearcuts invaded by Cytisus scoparius (Scotch broom) where traditional reforestation approaches have repeatedly failed. We tested how planting distance from intact Douglas-fir forest edges influenced reforestation success and whether inoculation with forest soils can be used to restore EMF relationships. We used an Illumina DNA sequencing approach to measure the abundance, richness and composition of ectomycorrhizal fungi on Douglas-fir roots, and assessed differences in Douglas-fir seedling survival and growth near to and far from forest edges with and without forest soil inoculum. Planting Douglas-fir seedlings near forest edges increased seedling survival, growth, and EMF root colonization. Edge proximity had no effect on EMF richness but did change fungal community composition. Inoculations with forest soil did not increase EMF abundance or richness or change community composition, nor did it improve seedling establishment. With Illumina sequencing, we identified two to three times greater species richness than described in previous edge effects studies. Of the 95 EMF species we identified, 40% of the species occurred on less than 5% of the seedlings. The ability to detect fungi at low abundance may explain why we did not detect differences in EMF richness with distance to hosts as previous studies. Our findings suggest that forest edges are suitable for reforestation, even when the interiors of deforested areas are not. We advocate for timber harvest designs that maximize edge habitat where ectomycorrhizal fungi contribute to tree establishment. However, this study does not support the use of inoculation with forest soil as a simple method to enhance EMF and seedling survival.


Asunto(s)
Micorrizas , Pseudotsuga , Bosques , Raíces de Plantas , Plantones , Suelo , Microbiología del Suelo , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...