Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 383(6678): 42-48, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38175887

RESUMEN

Quantum oscillations originating from the quantization of electron cyclotron orbits provide sensitive diagnostics of electron bands and interactions. We report on nanoscale imaging of the thermodynamic magnetization oscillations caused by the de Haas-van Alphen effect in moiré graphene. Scanning by means of superconducting quantum interference device (SQUID)-on-tip in Bernal bilayer graphene crystal axis-aligned to hexagonal boron nitride reveals large magnetization oscillations with amplitudes reaching 500 Bohr magneton per electron in weak magnetic fields, unexpectedly low frequencies, and high sensitivity to superlattice filling fraction. The oscillations allow us to reconstruct the complex band structure, revealing narrow moiré bands with multiple overlapping Fermi surfaces separated by unusually small momentum gaps. We identified sets of oscillations that violate the textbook Onsager Fermi surface sum rule, signaling formation of broad-band particle-hole superposition states induced by coherent magnetic breakdown.

2.
ACS Appl Mater Interfaces ; 10(42): 36512-36522, 2018 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-30251824

RESUMEN

Rhenium disulfide (ReS2) is an attractive candidate for photodetection applications owing to its thickness-independent direct band gap. Despite various photodetection studies using two-dimensional semiconductors, the trade-off between responsivity and response time under varying measurement conditions has not been studied in detail. This report presents a comprehensive study of the architectural, laser power and gate bias dependence of responsivity and speed in supported and suspended ReS2 phototransistors. Photocurrent scans show uniform photogeneration across the entire channel because of enhanced optical absorption and a direct band gap in multilayer ReS2. A high responsivity of 4 A W-1 (at 50 ms response time) and a low response time of 20 µs (at 4 mA W-1 responsivity) make this one of the fastest reported transition-metal dichalcogenide photodetectors. Occupancy of intrinsic (bulk ReS2) and extrinsic (ReS2/SiO2 interface) traps is modulated using gate bias to demonstrate tunability of the response time (responsivity) over 4 orders (15×) of magnitude, highlighting the versatility of these photodetectors. Differences in the trap distributions of suspended and supported channel architectures, and their occupancy under different gate biases enable switching the dominant operating mechanism between either photogating or photoconduction. Further, a new metric that captures intrinsic photodetector performance by including the trade-off between its responsivity and speed, besides normalizing for the applied bias and geometry, is proposed and benchmarked for this work.

3.
Sci Rep ; 7(1): 3336, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28611452

RESUMEN

Graphene is a promising candidate for optoelectronic applications. In this report, a double gated bilayer graphene FET has been made using a combination of electrostatic and electrolytic gating in order to form an abrupt p-n junction. The presence of two Dirac peaks in the gating curve of the fabricated device confirms the formation of a p-n junction. At low temperatures, when the electrolyte is frozen intentionally, the photovoltage exhibits a six-fold pattern indicative of the hot electron induced photothermoelectric effect that has also been seen in graphene p-n junctions made using metallic gates. We have observed that the photovoltage increases with decreasing temperature indicating a dominant role of supercollision scattering. Our technique can also be extended to other 2D materials and to finer features that will lead to p-n junctions which span a large area, like a superlattice, that can generate a larger photoresponse. Our work creating abrupt p-n junctions is distinct from previous works that use a source-drain bias voltage with a single ionic gate creating a spatially graded p-n junction.

4.
Sci Rep ; 4: 3882, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24457558

RESUMEN

We demonstrate a simple technique to transfer chemical vapour deposited (CVD) graphene from copper and platinum substrates using a soak-and-peel delamination technique utilizing only hot deionized water. The lack of chemical etchants results in cleaner CVD graphene films minimizing unintentional doping, as confirmed by Raman and electrical measurements. The process allows the reuse of substrates and hence can enable the use of oriented substrates for growth of higher quality graphene, and is an inherently inexpensive and scalable process for large-area production.

5.
Nano Lett ; 13(9): 3990-5, 2013 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-23937358

RESUMEN

Superlattice in graphene generates extra Dirac points in the band structure and their number depends on the superlattice potential strength. Here, we have created a lateral superlattice in a graphene device with a tunable barrier height using a combination of two gates. In this Letter, we demonstrate the use of lateral superlattice to modify the band structure of graphene leading to the emergence of new Dirac cones. This controlled modification of the band structure persists up to 100 K.

6.
J Phys Condens Matter ; 24(17): 175003, 2012 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-22481035

RESUMEN

Massless Dirac fermions in monolayer graphene exhibit total transmission when normally incident on a scalar potential barrier, a consequence of the Klein paradox originally predicted by O Klein for relativistic electrons obeying the 3 + 1 dimensional Dirac equation. For bilayer graphene, charge carriers are massive Dirac fermions and, due to different chiralities, electron and hole states are not coupled to each other. Therefore, the wavefunction of an incident particle decays inside a barrier as for the non-relativistic Schrödinger equation. This leads to exponentially small transmission upon normal incidence. We show that, in the presence of magnetic barriers, such massive Dirac fermions can have transmission even at normal incidence. The general consequences of this behavior for multilayer graphene consisting of massless and massive modes are mentioned. We also briefly discuss the effect of a bias voltage on such magnetotransport.

7.
Indian J Urol ; 25(4): 508-15, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19955678

RESUMEN

Objective : The study aims to review the current status of nephron sparing surgery - open partial nephrectomy (OPN) for renal cell carcinoma in the minimal invasive era. The literature search was done using National Library of Medicine database (PubMed). Results : Early experience with laparoscopic partial nephrectomy is promising. It has an inherent advantage of less operative time, decreased operative blood loss and a shorter hospital stay at the expense of prolonged ischemia and operative time. Complex scenarios for partial nephrectomy such as centrally located tumor, tumor in a solitary kidney, predominantly cystic tumor, and multifocal disease probably are managed best with an open technique. All these challenging situations have been addressed successfully by experienced laparoscopic surgeons, therefore these conditions are best considered relative rather than absolute contraindications for laparoscopic partial nephrectomy. Conclusions : Laparoscopic partial nephrectomy faces the problem of technical complexity and availability of expertise. Open partial nephrectomy continues to be the gold standard for nephron sparing surgery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...