Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Asian J Psychiatr ; 92: 103887, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38183737

RESUMEN

BACKGROUND: Transcranial electric stimulation (tES) may improve cognition in psychosis spectrum disorders. However, few studies have used novel tES approaches, such as high definition tES (HD-tES) to target specific brain circuits. Recently, the extrastriate visual cortex (V5/MT) has been causally linked to visual hallucinations through lesion network mapping and this may be a promising approach for improving cognition. OBJECTIVE: We aim to determine if causal lesion network guided HD-tES to V5/MT improves cognitive performance as measured by the Brief Assessment of Cognition in Schizophrenia (BACS). METHODS: A single-blind pilot study with a within-subjects crossover design was performed to characterize the effect of cathodal HD-transcranial direct current stimulation (tDCS) and 2 Hz HD-transcranial alternating current stimulation (tACS) on cognition. Enrolled patients received 20 mins of HD-tES twice daily for 5 consecutive days applied bilaterally to V5/MT with a washout between conditions. BACS assessments were performed at baseline, day-5, and 1-month. RESULTS: 6 participants with psychosis spectrum disorder were enrolled. 6 individuals received cathodal HD-tDCS. 4 individuals received 2 Hz HD-tACS. HD-tACS resulted in significant (p < 0.1 baseline to 1-month improvements for Digit Sequencing, Verbal Fluency, and Tower of London. HD-tDCS did not result in significant improvement on any task. CONCLUSIONS: HD-tACS targeting V5/MT may be a promising treatment to improve cognitive abilities in individuals with psychosis. By promoting delta oscillations, tACS may enhance cortico-cortico communications across brain networks to improve verbal working memory, processing speed, and executive function. Large-scale investigations are needed to replicate these results.


Asunto(s)
Trastornos Psicóticos , Estimulación Transcraneal de Corriente Directa , Humanos , Cognición/fisiología , Memoria a Corto Plazo/fisiología , Proyectos Piloto , Trastornos Psicóticos/complicaciones , Trastornos Psicóticos/terapia , Método Simple Ciego , Estimulación Transcraneal de Corriente Directa/métodos , Estudios Cruzados
2.
Asian J Psychiatr ; 88: 103750, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37633159

RESUMEN

BACKGROUND: Transcranial electrical stimulation (tES) may improve psychosis symptoms, but few investigations have targeted brain regions causally linked to psychosis symptoms. We implemented a novel montage targeting the extrastriate visual cortex (eVC) previously identified by lesion network mapping in the manifestation of visual hallucinations. OBJECTIVE: To determine if lesion network guided High Definition-tES (HD-tES) to the eVC is safe and efficacious in reducing symptoms related to psychosis. METHODS: We conducted a single-blind crossover pilot study (NCT04870710) in patients with psychosis spectrum disorders. Participants first received HD-tDCS (direct current), followed by 4 weeks of wash out, then 2 Hz HD-tACS (alternating current). Participants received 5 days of daily (2×20 min) stimulation bilaterally to the eVC. Primary outcomes included the Positive and Negative Syndrome Scale (PANSS), biological motion task, and Event Related Potentials (ERP) from a steady state visual evoked potential (SSVEP) paradigm. Secondary outcomes included the Montgomery-Asperg Depression Rating Scale, Global Assessment of Functioning (GAF), velocity discrimination and visual working memory task, and emotional ERP. RESULTS: HD-tDCS improved PANSS general psychopathology in the short-term (d=0.47; pfdr=0.03), with long-term improvements in general psychopathology (d=0.62; pfdr=0.05) and GAF (d=-0.56; pfdr=0.04) with HD-tACS. HD-tDCS reduced SSVEP P1 (d=0.25; pfdr=0.005), which correlated with general psychopathology (ß = 0.274, t = 3.59, p = 0.04). No significant differences in safety or tolerability measures were identified. CONCLUSION: Lesion network guided HD-tES to the eVC is a safe, efficacious, and promising approach for reducing general psychopathology via changes in neuroplasticity. These results highlight the need for larger clinical trials implementing novel targeting methodologies for the treatments of psychosis.


Asunto(s)
Trastornos Psicóticos , Estimulación Transcraneal de Corriente Directa , Humanos , Potenciales Evocados Visuales , Memoria a Corto Plazo/fisiología , Pacientes Ambulatorios , Proyectos Piloto , Trastornos Psicóticos/terapia , Método Simple Ciego , Estimulación Transcraneal de Corriente Directa/métodos , Estudios Cruzados
3.
Sci Transl Med ; 15(697): eabo2044, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37224229

RESUMEN

Transcranial alternating current stimulation (tACS) has attracted interest as a technique for causal investigations into how rhythmic fluctuations in brain neural activity influence cognition and for promoting cognitive rehabilitation. We conducted a systematic review and meta-analysis of the effects of tACS on cognitive function across 102 published studies, which included 2893 individuals in healthy, aging, and neuropsychiatric populations. A total of 304 effects were extracted from these 102 studies. We found modest to moderate improvements in cognitive function with tACS treatment that were evident in several cognitive domains, including working memory, long-term memory, attention, executive control, and fluid intelligence. Improvements in cognitive function were generally stronger after completion of tACS ("offline" effects) than during tACS treatment ("online" effects). Improvements in cognitive function were greater in studies that used current flow models to optimize or confirm neuromodulation targets by stimulating electric fields generated in the brain by tACS protocols. In studies targeting multiple brain regions concurrently, cognitive function changed bidirectionally (improved or decreased) according to the relative phase, or alignment, of the alternating current in the two brain regions (in phase versus antiphase). We also noted improvements in cognitive function separately in older adults and in individuals with neuropsychiatric illnesses. Overall, our findings contribute to the debate surrounding the effectiveness of tACS for cognitive rehabilitation, quantitatively demonstrate its potential, and indicate further directions for optimal tACS clinical study design.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Humanos , Anciano , Cognición , Encéfalo , Envejecimiento , Entrenamiento Cognitivo
4.
medRxiv ; 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37066217

RESUMEN

Importance: Transcranial electrical stimulation (tES) may improve psychosis symptoms, but few investigations have targeted brain regions causally linked to psychosis symptoms. We implemented a novel montage targeting the extrastriate visual cortex (eVC) previously identified by lesion network mapping in the manifestation of visual hallucinations. Objective: To determine if lesion network guided HD-tES to the eVC is safe and efficacious in reducing symptoms related to psychosis. Design Setting and Participants: Single-center, nonrandomized, single-blind trial using a crossover design conducted in two 4-week phases beginning November 2020, and ending January 2022. Participants were adults 18-55 years of age with a diagnosis of schizophrenia, schizoaffective or psychotic bipolar disorder as confirmed by the Structured Clinical Interview for DSM-V, without an antipsychotic medication change for at least 4 weeks. A total of 8 participants consented and 6 participants enrolled. Significance threshold set to <0.1 due to small sample size. Interventions: 6 Participants first received HD-tDCS (direct current), followed by 4 weeks of wash out, then 4 received 2Hz HD-tACS (alternating current). Participants received 5 consecutive days of daily (2 × 20min) stimulation applied bilaterally to the eVC. Main Outcomes and Measures: Primary outcomes included the Positive and Negative Syndrome Scale (PANSS) total, positive, negative, and general scores, biological motion task, and Event Related Potential (ERP) measures obtained from a steady state visual evoked potential (SSVEP) task across each 4-week phase. Secondary outcomes included the Montgomery-Asperg Depression Rating Scale (MADRS), Global Assessment of Functioning (GAF), velocity discrimination task, visual working memory task, and emotional ERP across each 4-week phase. Results: HD-tDCS improved general psychopathology in the short-term (d=0.47; p fdr =0.03), with long-term improvements in general psychopathology (d=0.62; p fdr =0.05) and GAF (d=-0.56; p fdr =0.04) with HD-tACS. HD-tDCS reduced SSVEP P1 (d=0.25; p fdr =0.005), which correlated with general psychopathology (ß=0.274, t=3.59, p=0.04). No significant differences in safety or tolerability measures were identified. Conclusions and Relevance: Lesion network guided HD-tES to the eVC is a safe, efficacious, and promising approach for reducing general psychopathology via changes in neuroplasticity. These results highlight the need for larger clinical trials implementing novel targeting methodologies for the treatments of psychosis. Trial Registration: ClinicalTrials.gov Identifier: NCT04870710. Key Points: Question: Is lesion network guided neurostimulation an efficacious, safe, and targeted approach for treating psychosis?Findings: In this single-center, nonrandomized, crossover, single-blind trial of 6 outpatients with psychosis, improvement in general psychopathology was seen in the short-term with HD-tDCS (high-definition transcranial direct current stimulation) and long-term with HD-tACS (alternating current) targeting the extrastriate visual cortex (eVC). HD-tDCS reduced early visual evoked responses which linked to general psychopathology improvements. Overall, both stimulations were well tolerated.Meaning: Study findings suggest that lesion network guided HD-tES to the eVC is a safe, efficacious, and promising approach for reducing general psychopathology via neuroplastic changes.

5.
Proc Natl Acad Sci U S A ; 119(44): e2211147119, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36302042

RESUMEN

Understanding the neural mechanisms of conscious and unconscious experience is a major goal of fundamental and translational neuroscience. Here, we target the early visual cortex with a protocol of noninvasive, high-resolution alternating current stimulation while participants performed a delayed target-probe discrimination task and reveal dissociable mechanisms of mnemonic processing for conscious and unconscious perceptual contents. Entraining ß-rhythms in bilateral visual areas preferentially enhanced short-term memory for seen information, whereas α-entrainment in the same region preferentially enhanced short-term memory for unseen information. The short-term memory improvements were frequency-specific and long-lasting. The results add a mechanistic foundation to existing theories of consciousness, call for revisions to these theories, and contribute to the development of nonpharmacological therapeutics for improving visual cortical processing.


Asunto(s)
Estado de Conciencia , Percepción Visual , Humanos , Estado de Conciencia/fisiología , Percepción Visual/fisiología , Inconsciencia , Memoria a Corto Plazo
6.
Nat Neurosci ; 25(9): 1237-1246, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35995877

RESUMEN

The development of technologies to protect or enhance memory in older people is an enduring goal of translational medicine. Here we describe repetitive (4-day) transcranial alternating current stimulation (tACS) protocols for the selective, sustainable enhancement of auditory-verbal working memory and long-term memory in 65-88-year-old people. Modulation of synchronous low-frequency, but not high-frequency, activity in parietal cortex preferentially improved working memory on day 3 and day 4 and 1 month after intervention, whereas modulation of synchronous high-frequency, but not low-frequency, activity in prefrontal cortex preferentially improved long-term memory on days 2-4 and 1 month after intervention. The rate of memory improvements over 4 days predicted the size of memory benefits 1 month later. Individuals with lower baseline cognitive function experienced larger, more enduring memory improvements. Our findings demonstrate that the plasticity of the aging brain can be selectively and sustainably exploited using repetitive and highly focalized neuromodulation grounded in spatiospectral parameters of memory-specific cortical circuitry.


Asunto(s)
Memoria a Corto Plazo , Estimulación Transcraneal de Corriente Directa , Anciano , Anciano de 80 o más Años , Cognición/fisiología , Humanos , Memoria a Largo Plazo , Memoria a Corto Plazo/fisiología , Corteza Prefrontal/fisiología , Estimulación Transcraneal de Corriente Directa/métodos
8.
Nat Med ; 27(2): 232-238, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33462447

RESUMEN

Nearly one billion people worldwide suffer from obsessive-compulsive behaviors1,2, yet our mechanistic understanding of these behaviors is incomplete, and effective therapeutics are unavailable. An emerging perspective characterizes obsessive-compulsive behaviors as maladaptive habit learning3,4, which may be associated with abnormal beta-gamma neurophysiology of the orbitofrontal-striatal circuitry during reward processing5,6. We target the orbitofrontal cortex with alternating current, personalized to the intrinsic beta-gamma frequency of the reward network, and show rapid, reversible, frequency-specific modulation of reward- but not punishment-guided choice behavior and learning, driven by increased exploration in the setting of an actor-critic architecture. Next, we demonstrate that chronic application of the procedure over 5 days robustly attenuates obsessive-compulsive behavior in a non-clinical population for 3 months, with the largest benefits for individuals with more severe symptoms. Finally, we show that convergent mechanisms underlie modulation of reward learning and reduction of obsessive-compulsive symptoms. The results contribute to neurophysiological theories of reward, learning and obsessive-compulsive behavior, suggest a unifying functional role of rhythms in the beta-gamma range, and set the groundwork for the development of personalized circuit-based therapeutics for related disorders.


Asunto(s)
Cuerpo Estriado/diagnóstico por imagen , Trastorno Obsesivo Compulsivo/terapia , Corteza Prefrontal/diagnóstico por imagen , Estimulación Eléctrica Transcutánea del Nervio , Adulto , Mapeo Encefálico , Conducta Compulsiva/diagnóstico por imagen , Conducta Compulsiva/fisiopatología , Conducta Compulsiva/terapia , Cuerpo Estriado/fisiopatología , Cuerpo Estriado/efectos de la radiación , Femenino , Humanos , Masculino , Trastorno Obsesivo Compulsivo/diagnóstico por imagen , Trastorno Obsesivo Compulsivo/fisiopatología , Corteza Prefrontal/fisiopatología , Corteza Prefrontal/efectos de la radiación
9.
Annu Rev Med ; 72: 29-43, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33035432

RESUMEN

Impaired cognition is common in many neuropsychiatric disorders and severely compromises quality of life. Synchronous electrophysiological rhythms represent a core mechanism for sculpting communication dynamics among large-scale brain networks that underpin cognition and its breakdown in neuropsychiatric disorders. Here, we review an emerging neuromodulation technology called transcranial alternating current stimulation that has shown remarkable early results in rapidly improving various domains of human cognition by modulating properties of rhythmic network synchronization. Future noninvasive neuromodulation research holds promise for potentially rescuing network activity patterns and improving cognition, setting groundwork for the development of drug-free, circuit-based therapeutics for people with cognitive brain disorders.


Asunto(s)
Encéfalo/fisiopatología , Ritmo Circadiano/fisiología , Trastornos del Conocimiento/terapia , Cognición/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Trastornos del Conocimiento/fisiopatología , Humanos
11.
J Neurophysiol ; 122(4): 1538-1554, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31268805

RESUMEN

Endogenous cueing of attention enhances sensory processing of the attended stimulus (perceptual sensitivity) and prioritizes information from the attended location for guiding behavioral decisions (spatial choice bias). Here, we test whether sensitivity and bias effects of endogenous spatial attention are under the control of common or distinct mechanisms. Human observers performed a multialternative visuospatial attention task with probabilistic spatial cues. Observers' behavioral choices were analyzed with a recently developed multidimensional signal detection model (the m-ADC model). The model effectively decoupled the effects of spatial cueing on sensitivity from those on spatial bias and revealed striking dissociations between them. Sensitivity was highest at the cued location and not significantly different among uncued locations, suggesting a spotlight-like allocation of sensory resources at the cued location. On the other hand, bias varied systematically with cue validity, suggesting a graded allocation of decisional priority across locations. Cueing-induced modulations of sensitivity and bias were uncorrelated within and across subjects. Bias, but not sensitivity, correlated with key metrics of prioritized decision-making, including reaction times and decision optimality indices. In addition, we developed a novel metric, differential risk curvature, for distinguishing bias effects of attention from those of signal expectation. Differential risk curvature correlated selectively with m-ADC model estimates of bias but not with estimates of sensitivity. Our results reveal dissociable effects of endogenous attention on perceptual sensitivity and choice bias in a multialternative choice task and motivate the search for the distinct neural correlates of each.NEW & NOTEWORTHY Attention is often studied as a unitary phenomenon. Yet, attention can both enhance the perception of important stimuli (sensitivity) and prioritize such stimuli for decision-making (bias). Employing a multialternative spatial attention task with probabilistic cueing, we show that attention affects sensitivity and bias through dissociable mechanisms. Specifically, the effects on sensitivity alone match the notion of an attentional "spotlight." Our behavioral model enables quantifying component processes of attention, and identifying their respective neural correlates.


Asunto(s)
Atención , Toma de Decisiones , Percepción , Adulto , Encéfalo/fisiología , Señales (Psicología) , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tiempo de Reacción , Sensación , Conducta Espacial
12.
J Indian Inst Sci ; 97(4): 451-475, 2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-31231154

RESUMEN

Attention is a process of selection that allows us to intelligently navigate the abundance of information in our world. Attention can be either directed voluntarily based on internal goals-"top-down" or goal-directed attention-or captured automatically, by salient stimuli-"bottom-up" or stimulus-driven attention. Do these two modes of attention control arise from same or different brain circuits? Do they share similar or distinct neural mechanisms? In this review, we explore this dichotomy between the neural bases of top-down and bottom-up attention control, with a special emphasis on insights gained from non-invasive neurostimulation techniques, specifically, transcranial magnetic stimulation (TMS). TMS enables spatially focal and temporally precise manipulation of brain activity. We explore a significant literature devoted to investigating the role of fronto-parietal brain regions in top-down and bottom-up attention with TMS, and highlight key areas of convergence and debate. We also discuss recent advances in combinatorial paradigms that combine TMS with other imaging modalities, such as functional magnetic resonance imaging or electroencephalography. These paradigms are beginning to bridge essential gaps in our understanding of the neural pathways by which TMS affects behavior, and will prove invaluable for unraveling mechanisms of attention control, both in health and in disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA