Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
J Clin Neurol ; 20(2): 140-152, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38330416

RESUMEN

The relationship between infections and stroke has not been fully characterized, probably delaying the development of specific treatments. This narrative review addresses mechanisms of stroke linked to infections, including hypercoagulability, endothelial dysfunction, vasculitis, and impaired thrombolysis. SARS-CoV-2, the virus that causes COVID-19, may promote the development of stroke, which may represent its most severe neurological complication. The development of specific therapies for infection-associated stroke remains a profound challenge. Perhaps the most important remaining issue is the distinction between infections that trigger a stroke versus infections that are truly incidental. This distinction likely requires the establishment of appropriate biomarkers, candidates of which are elevated levels of fibrin D-dimer and anticardiolipin/antiphospholipid antibodies. These candidate biomarkers might have potential use in identifying pathogenic infections preceding stroke, which is a precursor to establishing specific therapies for this syndrome.

2.
Blood ; 143(15): 1465-1475, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38142404

RESUMEN

ABSTRACT: Direct oral anticoagulants (DOACs) that inhibit the coagulation proteases thrombin or factor Xa (FXa) have replaced warfarin and other vitamin K antagonists (VKAs) for most indications requiring long-term anticoagulation. In many clinical situations, DOACs are as effective as VKAs, cause less bleeding, and do not require laboratory monitoring. However, because DOACs target proteases that are required for hemostasis, their use increases the risk of serious bleeding. Concerns over therapy-related bleeding undoubtedly contribute to undertreatment of many patients who would benefit from anticoagulation therapy. There is considerable interest in the plasma zymogen factor XI (FXI) and its protease form factor XIa (FXIa) as drug targets for treating and preventing thrombosis. Laboratory and epidemiologic studies support the conclusion that FXI contributes to venous and arterial thrombosis. Based on 70 years of clinical observations of patients lacking FXI, it is anticipated that drugs targeting this protein will cause less severe bleeding than warfarin or DOACs. In phase 2 studies, drugs that inhibit FXI or FXIa prevent venous thromboembolism after total knee arthroplasty as well as, or better than, low molecular weight heparin. Patients with heart disease on FXI or FXIa inhibitors experienced less bleeding than patients taking DOACs. Based on these early results, phase 3 trials have been initiated that compare drugs targeting FXI and FXIa to standard treatments or placebo. Here, we review the contributions of FXI to normal and abnormal coagulation and discuss results from preclinical, nonclinical, and clinical studies of FXI and FXIa inhibitors.


Asunto(s)
Factor XI , Trombosis , Humanos , Factor XIa/farmacología , Warfarina/uso terapéutico , Warfarina/farmacología , Trombosis/tratamiento farmacológico , Trombosis/etiología , Trombosis/prevención & control , Coagulación Sanguínea , Anticoagulantes/efectos adversos , Hemorragia/inducido químicamente , Fibrinolíticos/uso terapéutico
3.
Blood ; 141(15): 1871-1883, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-36706361

RESUMEN

A hypercoagulable state, chronic inflammation, and increased risk of venous thrombosis and stroke are prominent features in patients with sickle cell disease (SCD). Coagulation factor XII (FXII) triggers activation of the contact system that is known to be involved in both thrombosis and inflammation, but not in physiological hemostasis. Therefore, we investigated whether FXII contributes to the prothrombotic and inflammatory complications associated with SCD. We found that when compared with healthy controls, patients with SCD exhibit increased circulating biomarkers of FXII activation that are associated with increased activation of the contact pathway. We also found that FXII, but not tissue factor, contributes to enhanced thrombin generation and systemic inflammation observed in sickle cell mice challenged with tumor necrosis factor α. In addition, FXII inhibition significantly reduced experimental venous thrombosis, congestion, and microvascular stasis in a mouse model of SCD. Moreover, inhibition of FXII attenuated brain damage and reduced neutrophil adhesion to the brain vasculature of sickle cell mice after ischemia/reperfusion induced by transient middle cerebral artery occlusion. Finally, we found higher FXII, urokinase plasminogen activator receptor, and αMß2 integrin expression in neutrophils of patients with SCD compared with healthy controls. Our data indicate that targeting FXII effectively reduces experimental thromboinflammation and vascular complications in a mouse model of SCD, suggesting that FXII inhibition may provide a safe approach for interference with inflammation, thrombotic complications, and vaso-occlusion in patients with SCD.


Asunto(s)
Anemia de Células Falciformes , Factor XII , Animales , Ratones , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/metabolismo , Factor XII/metabolismo , Inflamación , Accidente Cerebrovascular , Trombosis/metabolismo
4.
Blood Adv ; 7(9): 1915-1925, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36583671

RESUMEN

Thrombin generation (TG) assays serve as a valuable tool to study the amplifying roles of intrinsic pathway factors in human coagulation and provide functional insights into the increased bleeding observed in individuals deficient in factors (F) XI, IX, or VIII. Mice are used extensively in hemostasis research owing to the availability of coagulation factor-deficient mice. However, phenotypic differences between mouse and human TG have become apparent. In this study, we describe a novel, calibrated mouse whole blood (WB) TG assay used to assess the amplifying roles of intrinsic pathway factors in mouse coagulation. WB- and plasma-TG was triggered with either silica or tissue factor (TF) in samples from wild-type mice and mice deficient for FXII, FXI, or FIX. Expectedly, silica-triggered WB-TG and platelet-poor plasma (PPP)-TG were significantly reduced by deficiencies for FXII, FXI, or FIX. FXII deficiency had no effect on WB-TG or PPP-TG when triggered with TF. However, FXI deficiency resulted in significantly reduced WB-TG triggered by low concentrations of TF but had no effect on TF-triggered PPP-TG. FIX deficiency profoundly reduced WB-TG when triggered by low or high concentrations of TF whereas TG in PPP or platelet-rich plasma was only moderately reduced under these conditions. In conclusion, we have developed a novel mouse WB-TG assay with enhanced sensitivity to FXI- and FIX-dependent amplification of coagulation compared with an established plasma-TG assay. The enhanced sensitivity of WB-TG to FXI and FIX-dependent amplification of coagulation suggests an important role of blood cells in this process.


Asunto(s)
Coagulación Sanguínea , Trombina , Animales , Humanos , Ratones , Hemorragia , Hemostasis , Trombina/metabolismo , Tromboplastina/metabolismo , Factor XI/metabolismo , Factor IX/metabolismo
5.
J Biol Chem ; 298(2): 101567, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35007530

RESUMEN

Skeletal muscle myosin (SkM) has been shown to possess procoagulant activity; however, the mechanisms of this coagulation-enhancing activity involving plasma coagulation pathways and factors are incompletely understood. Here, we discovered direct interactions between immobilized SkM and coagulation factor XI (FXI) using biolayer interferometry (Kd = 0.2 nM). In contrast, we show that prekallikrein, a FXI homolog, did not bind to SkM, reflecting the specificity of SkM for FXI binding. We also found that the anti-FXI monoclonal antibody, mAb 1A6, which recognizes the Apple (A) 3 domain of FXI, potently inhibited binding of FXI to immobilized SkM, implying that SkM binds FXI A3 domain. In addition, we show that SkM enhanced FXI activation by thrombin in a concentration-dependent manner. We further used recombinant FXI chimeric proteins in which each of the four A domains of the heavy chain (designated A1 through A4) was individually replaced with the corresponding A domain from prekallikrein to investigate SkM-mediated enhancement of thrombin-induced FXI activation. These results indicated that activation of two FXI chimeras with substitutions of either the A3 domains or A4 domains was not enhanced by SkM, whereas substitution of the A2 domain did not reduce the thrombin-induced activation compared with wildtype FXI. These data strongly suggest that functional interaction sites on FXI for SkM involve the A3 and A4 domains. Thus, this study is the first to reveal and support the novel intrinsic blood coagulation pathway concept that the procoagulant mechanisms of SkM include FXI binding and enhancement of FXI activation by thrombin.


Asunto(s)
Coagulación Sanguínea , Factor XI , Miosinas del Músculo Esquelético , Trombina , Anticuerpos Monoclonales/química , Sitios de Unión , Factor XI/química , Factor XI/genética , Factor XI/metabolismo , Precalicreína/química , Precalicreína/metabolismo , Dominios Proteicos , Proteínas Recombinantes de Fusión/química , Miosinas del Músculo Esquelético/metabolismo , Trombina/metabolismo
6.
Blood ; 138(22): 2173-2184, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34086880

RESUMEN

End-stage renal disease (ESRD) patients on chronic hemodialysis have repeated blood exposure to artificial surfaces that can trigger clot formation within the hemodialysis circuit. Dialyzer clotting can lead to anemia despite erythropoietin and iron supplementation. Unfractionated heparin prevents clotting during hemodialysis, but it is not tolerated by all patients. Although heparin-free dialysis is performed, intradialytic blood entrapment can be problematic. To address this issue, we performed a randomized, double-blind, phase 2 study comparing AB023, a unique antibody that binds factor XI (FXI) and blocks its activation by activated FXII, but not by thrombin, to placebo in 24 patients with ESRD undergoing heparin-free hemodialysis. Patients were randomized to receive a single predialysis dose of AB023 (0.25 or 0.5 mg/kg) or placebo in a 2:1 ratio, and safety and preliminary efficacy were compared with placebo and observations made prior to dosing within each treatment arm. AB023 administration was not associated with impaired hemostasis or other drug-related adverse events. Occlusive events requiring hemodialysis circuit exchange were less frequent and levels of thrombin-antithrombin complexes and C-reactive protein were lower after AB023 administration compared with data collected prior to dosing. AB023 also reduced potassium and iron entrapment in the dialyzers, consistent with less blood accumulation within the dialyzers. We conclude that despite the small sample size, inhibition of contact activation-induced coagulation with AB023 was well tolerated and reduced clotting within the dialyzer. This trial was registered at www.clinicaltrials.gov as #NCT03612856.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Antitrombinas/uso terapéutico , Fallo Renal Crónico/terapia , Diálisis Renal/métodos , Adulto , Anticuerpos Monoclonales Humanizados/efectos adversos , Antitrombinas/efectos adversos , Método Doble Ciego , Factor XI/antagonistas & inhibidores , Femenino , Hemostasis/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , Efecto Placebo , Diálisis Renal/efectos adversos , Trombosis/etiología , Trombosis/prevención & control
7.
J Immunol ; 206(8): 1784-1792, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33811105

RESUMEN

Complement factor H (CFH) is the major inhibitor of the alternative pathway of the complement system and is structurally related to beta2-glycoprotein I, which itself is known to bind to ligands, including coagulation factor XI (FXI). We observed reduced complement activation when FXI activation was inhibited in a baboon model of lethal systemic inflammation, suggesting cross-talk between FXI and the complement cascade. It is unknown whether FXI or its activated form, activated FXI (FXIa), directly interacts with the complement system. We explored whether FXI could interact with and inhibit the activity of CFH. We found that FXIa neutralized CFH by cleavage of the R341/R342 bonds. FXIa reduced the capacity of CFH to enhance the cleavage of C3b by factor I and the decay of C3bBb. The binding of CFH to human endothelial cells was also reduced after incubating CFH with FXIa. The addition of either short- or long-chain polyphosphate enhanced the capacity of FXIa to cleave CFH. FXIa also cleaved CFH that was present on endothelial cells and in the secretome from blood platelets. The generation of FXIa in plasma induced the cleavage of CFH. Moreover, FXIa reduced the cleavage of C3b by factor I in serum. Conversely, we observed that CFH inhibited FXI activation by either thrombin or FXIIa. Our study provides, to our knowledge, a novel molecular link between the contact pathway of coagulation and the complement system. These results suggest that FXIa generation enhances the activity of the complement system and thus may potentiate the immune response.


Asunto(s)
Plaquetas/metabolismo , Factor H de Complemento/metabolismo , Células Endoteliales/metabolismo , Factor XIa/metabolismo , Inflamación/metabolismo , Animales , Coagulación Sanguínea , Complemento C3b/metabolismo , Vía Alternativa del Complemento , Fibrinógeno/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Papio , Unión Proteica , Receptor Cross-Talk
8.
Blood ; 138(2): 178-189, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33598692

RESUMEN

Activation of coagulation factor (F) XI promotes multiorgan failure in rodent models of sepsis and in a baboon model of lethal systemic inflammation induced by infusion of heat-inactivated Staphylococcus aureus. Here we used the anticoagulant FXII-neutralizing antibody 5C12 to verify the mechanistic role of FXII in this baboon model. Compared with untreated control animals, repeated 5C12 administration before and at 8 and 24 hours after bacterial challenge prevented the dramatic increase in circulating complexes of contact system enzymes FXIIa, FXIa, and kallikrein with antithrombin or C1 inhibitor, and prevented cleavage and consumption of high-molecular-weight kininogen. Activation of several coagulation factors and fibrinolytic enzymes was also prevented. D-dimer levels exhibited a profound increase in the untreated animals but not in the treated animals. The antibody also blocked the increase in plasma biomarkers of inflammation and cell damage, including tumor necrosis factor, interleukin (IL)-1ß, IL-6, IL-8, IL-10, granulocyte-macrophage colony-stimulating factor, nucleosomes, and myeloperoxidase. Based on clinical presentation and circulating biomarkers, inhibition of FXII prevented fever, terminal hypotension, respiratory distress, and multiorgan failure. All animals receiving 5C12 had milder and transient clinical symptoms and were asymptomatic at day 7, whereas untreated control animals suffered irreversible multiorgan failure and had to be euthanized within 2 days after the bacterial challenge. This study confirms and extends our previous finding that at least 2 enzymes of the contact activation complex, FXIa and FXIIa, play critical roles in the development of an acute and terminal inflammatory response in baboons challenged with heat-inactivated S aureus.


Asunto(s)
Factor XII/metabolismo , Insuficiencia Multiorgánica/metabolismo , Insuficiencia Multiorgánica/microbiología , Staphylococcus aureus/fisiología , Animales , Anticuerpos/uso terapéutico , Trastornos de la Coagulación Sanguínea/complicaciones , Trastornos de la Coagulación Sanguínea/inmunología , Trastornos de la Coagulación Sanguínea/microbiología , Plaquetas/metabolismo , Microambiente Celular , Activación de Complemento , Factor XII/inmunología , Femenino , Fibrinógeno/metabolismo , Calor , Inflamación/complicaciones , Inflamación/patología , Masculino , Insuficiencia Multiorgánica/inmunología , Papio , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología , Análisis de Supervivencia
9.
J Thromb Haemost ; 19(4): 1001-1017, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33421301

RESUMEN

BACKGROUND: Human coagulation factor (F) XI deficiency, a defect of the contact activation system, protects against venous thrombosis, stroke, and heart attack, whereas FXII, plasma prekallikrein, or kininogen deficiencies are asymptomatic. FXI deficiency, inhibition of FXI production, activated FXI (FXIa) inhibitors, and antibodies to FXI that interfere with FXI/FXII interactions reduce experimental thrombosis and inflammation. FXI inhibitors are antithrombotic in patients, and FXI and FXII deficiencies are atheroprotective in apolipoprotein E-deficient mice. OBJECTIVES: Investigate the effects of pharmacological targeting of FXI in experimental models of atherogenesis and established atherosclerosis. METHODS AND RESULTS: Low-density lipoprotein receptor-knockout (Ldlr-/- ) mice were administered high-fat diet (HFD) for 8 weeks; concomitantly, FXI was targeted with anti-FXI antibody (14E11) or FXI antisense oligonucleotide (ASO). 14E11 and FXI-ASO reduced atherosclerotic lesion area in proximal aortas when compared with controls, and 14E11 also reduced aortic sinus lesions. In an established disease model, in which therapy was given after atherosclerosis had developed, Ldlr-/- mice were fed HFD for 8 weeks and then administered 14E11 or FXI-ASO weekly until 16 weeks on HFD. In this established disease model, 14E11 and FXI-ASO reduced atherosclerotic lesion area in proximal aortas, but not in aortic sinus. In cultures of human endothelium, FXIa exposure disrupted VE-Cadherin expression and increased endothelial lipoprotein permeability. Strikingly, we found that 14E11 prevented the disruption of VE-Cadherin expression in aortic sinus lesions observed in the atherogenesis mouse model. CONCLUSION: Pharmacological targeting of FXI reduced atherogenesis in Ldlr-/- mice. Interference with the contact activation system may safely reduce development or progression of atherosclerosis.


Asunto(s)
Aterosclerosis , Deficiencia del Factor XI , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/prevención & control , Coagulación Sanguínea , Factor XI/genética , Humanos , Lipoproteínas LDL , Ratones , Receptores de LDL/genética
10.
Am J Physiol Cell Physiol ; 320(3): C365-C374, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33471623

RESUMEN

Factor XI (FXI) has been shown to bind platelets, but the functional significance of this observation remains unknown. Platelets are essential for hemostasis and play a critical role in thrombosis, whereas FXI is not essential for hemostasis but promotes thrombosis. An apparent functional contradiction, platelets are known to support thrombin generation, yet platelet granules release protease inhibitors, including those of activated FXI (FXIa). We aim to investigate the secretory and binding mechanisms by which platelets could support or inhibit FXIa activity. The presence of platelets enhanced FXIa activity in a purified system and increased coagulation Factor IX (FIX) activation by FXIa and fibrin generation in human plasma. In contrast, platelets reduced the activation of FXI by activated coagulation factor XII (FXIIa) and the activation of FXII by kallikrein (PKa). Incubation of FXIa with the platelet secretome, which contains FXIa inhibitors, such as protease nexin-II, abolished FXIa activity, yet in the presence of activated platelets, the secretome was not able to block the activity of FXIa. FXIa variants lacking the anion-binding sites did not alter the effect of platelets on FXIa activity or interaction. Western blot analysis of bound FXIa [by FXIa-platelet membrane immunoprecipitation] showed that the interaction with platelets is zinc dependent and, unlike FXI binding to platelets, not dependent on glycoprotein Ib. FXIa binding to the platelet membrane increases its capacity to activate FIX in plasma likely by protecting it from inhibition by inhibitors secreted by activated platelets. Our findings suggest that an interaction of FXIa with the platelet surface may induce an allosteric modulation of FXIa.


Asunto(s)
Plaquetas/metabolismo , Factor XIa/metabolismo , Adolescente , Precursor de Proteína beta-Amiloide/metabolismo , Sitios de Unión/fisiología , Coagulación Sanguínea/fisiología , Femenino , Hemostasis/fisiología , Humanos , Masculino , Trombina/metabolismo , Trombosis/metabolismo
11.
Metab Brain Dis ; 36(3): 407-420, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33411219

RESUMEN

The coagulation cascade and immune system are intricately linked, highly regulated and respond cooperatively in response to injury and infection. Increasingly, evidence of hyper-coagulation has been associated with autoimmune disorders, including multiple sclerosis (MS). The pathophysiology of MS includes immune cell activation and recruitment to the central nervous system (CNS) where they degrade myelin sheaths, leaving neuronal axons exposed to damaging inflammatory mediators. Breakdown of the blood-brain barrier (BBB) facilitates the entry of peripheral immune cells. Evidence of thrombin activity has been identified within the CNS of MS patients and studies using animal models of experimental autoimmune encephalomyelitis (EAE), suggest increased thrombin generation and activity may play a role in the pathogenesis of MS as well as inhibit remyelination processes. Thrombin is a serine protease capable of cleaving multiple substrates, including protease activated receptors (PARs), fibrinogen, and protein C. Cleavage of all three of these substrates represent pathways through which thrombin activity may exert immuno-regulatory effects and regulate permeability of the BBB during MS and EAE. In this review, we summarize evidence that thrombin activity directly, through PARs, and indirectly, through fibrin formation and activation of protein C influences neuro-immune responses associated with MS and EAE pathology.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Esclerosis Múltiple/metabolismo , Trombina/metabolismo , Animales , Sistema Nervioso Central/metabolismo , Humanos
12.
Blood Adv ; 4(24): 6135-6147, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33351111

RESUMEN

Factor XI (FXI) is the zymogen of a plasma protease (FXIa) that contributes to hemostasis by activating factor IX (FIX). In the original cascade model of coagulation, FXI is converted to FXIa by factor XIIa (FXIIa), a component, along with prekallikrein and high-molecular-weight kininogen (HK), of the plasma kallikrein-kinin system (KKS). More recent coagulation models emphasize thrombin as a FXI activator, bypassing the need for FXIIa and the KKS. We took an evolutionary approach to better understand the relationship of FXI to the KKS and thrombin generation. BLAST searches were conducted for FXI, FXII, prekallikrein, and HK using genomes for multiple vertebrate species. The analysis shows the KKS appeared in lobe-finned fish, the ancestors of all land vertebrates. FXI arose later from a duplication of the prekallikrein gene early in mammalian evolution. Features of FXI that facilitate efficient FIX activation are present in all living mammals, including primitive egg-laying monotremes, and may represent enhancement of FIX-activating activity inherent in prekallikrein. FXI activation by thrombin is a more recent acquisition, appearing in placental mammals. These findings suggest FXI activation by FXIIa may be more important to hemostasis in primitive mammals than in placental mammals. FXI activation by thrombin places FXI partially under control of the vitamin K-dependent coagulation mechanism, reducing the importance of the KKS in blood coagulation. This would explain why humans with FXI deficiency have a bleeding abnormality, whereas those lacking components of the KKS do not.


Asunto(s)
Deficiencia del Factor XI , Factor XI , Animales , Factor XI/genética , Factor XI/metabolismo , Deficiencia del Factor XI/genética , Factor XIIa/metabolismo , Femenino , Humanos , Sistema Calicreína-Quinina , Embarazo , Precalicreína/genética , Precalicreína/metabolismo
13.
Res Pract Thromb Haemost ; 4(4): 500-505, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32542210

RESUMEN

Coronavirus disease 2019 (COVID-19) is predicted to overwhelm health care capacity in the United States and worldwide, and, as such, interventions that could prevent clinical decompensation and respiratory compromise in infected patients are desperately needed. Excessive cytokine release and activation of coagulation appear to be key drivers of COVID-19 pneumonia and associated mortality. Contact activation has been linked to pathologic upregulation of both inflammatory mediators and coagulation, and accumulating preclinical and clinical data suggest it to be a rational therapeutic target in patients with COVID-19. Pharmacologic inhibition of the interaction between coagulation factors XI and XII has been shown to prevent consumptive coagulopathy, pathologic systemic inflammatory response, and mortality in at least 2 types of experimental sepsis. Importantly, inhibition of contact activation also prevented death from Staphylococcus aureus-induced lethal systemic inflammatory response syndrome in nonhuman primates. The contact system is likely dispensable for hemostasis and may not be needed for host immunity, suggesting it to be a reasonably safe target that will not result in immunosuppression or bleeding. As a few drugs targeting contact activation are already in clinical development, immediate clinical trials for their use in patients with COVID-19 are potentially feasible for the prevention or treatment of respiratory distress.

14.
Cell Mol Bioeng ; 13(3): 179-187, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32426056

RESUMEN

INTRODUCTION: Tissue factor (TF) and factor (F) VII, components of the extrinsic pathway of blood coagulation, are essential for hemostatic plug formation in response to injury; less clear are their roles in propagating thrombosis, as observational data in humans with congenital FVII deficiency suggests persistent thrombotic and bleeding risk even at significantly decreased FVII levels. We aimed to define the contribution of FVII to thrombus formation and hemostasis using a non-human primate model. METHODS: We treated baboons with a FVII antisense oligonucleotide (ASO) and measured platelet and fibrin deposition inside and distal to collagen- or TF-coated vascular grafts. We assessed hemostasis by measuring bleeding time (BT) and prothrombin time (PT). Enoxaparin and vehicle treatments served as controls. RESULTS: FVII-ASO treatment reduced FVII levels by 95% and significantly increased both the PT and BT. Lowering FVII levels did not decrease platelet deposition in collagen- or TF-coated grafts, in thrombi distal to the grafts, or fibrin content of either collagen- and TF-coated grafts. Lowering FVII levels were associated with a modest 25% reduction in platelet deposition at 60 min in the distal thrombus tail of TF-coated grafts only. CONCLUSIONS: FVII inhibition by way of ASO is feasible yet significantly impairs hemostasis while only exhibiting antithrombotic effects when thrombosis is initiated by vessel wall surface-associated TF exposure.

15.
Res Pract Thromb Haemost ; 4(2): 205-216, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32110750

RESUMEN

BACKGROUND: The contact factor XII (FXII) activates upon contact with a variety of charged surfaces. Activated FXII (FXIIa) activates factor XI, which activates factor IX, resulting in thrombin generation, platelet activation, and fibrin formation. In both in vitro and in vivo rabbit models, components of medical devices, including extracorporeal oxygenators, are known to incite fibrin formation in a FXII-dependent manner. Since FXII has no known role in hemostasis and its inhibition is therefore likely a safe antithrombotic approach, we investigated whether FXII inhibition also reduces accumulation of platelets in extracorporeal oxygenators. OBJECTIVES: We aimed to determine the effect of FXII inhibition on platelet deposition in perfused extracorporeal membrane oxygenators in nonhuman primates. METHODS: A potent FXII neutralizing monoclonal antibody, 5C12, was administered intravenously to block contact activation in baboons. Extracorporeal membrane oxygenators were temporarily deployed into chronic arteriovenous access shunts. Radiolabeled platelet deposition in oxygenators was quantified in real time using gamma camera imaging. Biochemical assays were performed to characterize the method of action of 5C12. RESULTS: The anti-FXII monoclonal antibody 5C12 recognized both the alpha and beta forms of human and baboon FXII by binding to the protease-containing domain, and inhibited FXIIa activity. Administration of 5C12 to baboons reduced platelet deposition and fibrin formation in the extracorporeal membrane oxygenators, in both the presence and absence of systemic low-dose unfractionated heparin. The antiplatelet dose of 5C12 did not cause measurable increases in template bleeding times in baboons. CONCLUSIONS: FXII represents a possible therapeutic and safe target for reducing platelet deposition and fibrin formation during medical interventions including extracorporeal membrane oxygenation.

16.
Blood ; 135(9): 689-699, 2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-31977000

RESUMEN

Although thrombin is a key enzyme in the coagulation cascade and is required for both normal hemostasis and pathologic thrombogenesis, it also participates in its own negative feedback via activation of protein C, which downregulates thrombin generation by enzymatically inactivating factors Va and VIIIa. Our group and others have previously shown that thrombin's procoagulant and anticoagulant activities can be effectively disassociated to varying extents through site-directed mutagenesis. The thrombin mutant W215A/E217A (WE thrombin) has been one of the best characterized constructs with selective activity toward protein C. Although animal studies have demonstrated that WE thrombin acts as an anticoagulant through activated protein C (APC) generation, the observed limited systemic anticoagulation does not fully explain the antithrombotic potency of this or other thrombin mutants. AB002 (E-WE thrombin) is an investigational protein C activator thrombin analog in phase 2 clinical development (clinicaltrials.gov NCT03963895). Here, we demonstrate that this molecule is a potent enzyme that is able to rapidly interrupt arterial-type thrombus propagation at exceedingly low doses (<2 µg/kg, IV), yet without substantial systemic anticoagulation in baboons. We demonstrate that AB002 produces APC on platelet aggregates and competitively inhibits thrombin-activatable fibrinolysis inhibitor (carboxypeptidase B2) activation in vitro, which may contribute to the observed in vivo efficacy. We also describe its safety and activity in a phase 1 first-in-human clinical trial. Together, these results support further clinical evaluation of AB002 as a potentially safe and effective new approach for treating or preventing acute thrombotic and thromboembolic conditions. This trial was registered at www.clinicaltrials.gov as #NCT03453060.


Asunto(s)
Fibrinolíticos/farmacología , Proteína C/efectos de los fármacos , Trombina/análogos & derivados , Trombosis/prevención & control , Adulto , Animales , Método Doble Ciego , Humanos , Persona de Mediana Edad , Papio , Proteínas Recombinantes/farmacología
17.
Blood Adv ; 3(20): 3080-3091, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31648335

RESUMEN

In humans, platelet count within the normal range is required for physiological hemostasis, but, adversely, platelets also support pathological thrombosis. Moreover, by releasing growth factors, they may enhance neoplastic proliferation. We hypothesize that platelet count correlates with platelet-dependent pathologies, even within the range of hemostatic competence. Because platelet production is promoted by thrombopoietin signaling through the myeloproliferative leukemia virus oncogene (cMPL), a receptor expressed on megakaryocytes, we evaluated the feasibility of selective targeting of hepatic thrombopoietin production to test this hypothesis. We synthesized murine- and primate-specific antisense oligonucleotides (THPO-ASO) that silence hepatic thrombopoietin gene (THPO) expression without blocking extrahepatic THPO. Repeated doses of THPO-ASO were administered to mice and a baboon, causing a sustained 50% decline in plasma thrombopoietin levels and platelet count within 4 weeks in both species. To investigate whether reducing platelet count within the translationally relevant hemostatic range could alter a neoplastic process, we administered THPO-ASO to 6-week-old transgenic MMTV-PyMT mice that develop early ductal atypia that progresses into cMPL-negative fatal metastatic breast cancer within 2 to 3 months. THPO-ASO treatment increased the average time to euthanasia (primary humane endpoint) at 2 cm3 combined palpable tumor volume. Our results show that THPO-ASO reduced blood platelet count, plasma platelet factor 4, vascular endothelial growth factor, thrombopoietin levels, bone marrow megakaryocyte density, tumor growth rate, proliferation index, vascularization, platelet and macrophage content, and pulmonary metastases vs untreated controls. These findings confirm that sustained and moderate pharmacological platelet count reduction is feasible with THPO-ASO administration and can delay progression of certain platelet-dependent pathological processes within a safe hemostatic platelet count range.


Asunto(s)
Neoplasias de la Mama/sangre , Neoplasias de la Mama/etiología , Silenciador del Gen , Hígado/metabolismo , Recuento de Plaquetas , Trombopoyetina/genética , Animales , Neoplasias de la Mama/patología , Movimiento Celular , Transformación Celular Neoplásica , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Haplorrinos , Ratones , Ratones Transgénicos , Estadificación de Neoplasias , Microambiente Tumoral/genética
18.
Arterioscler Thromb Vasc Biol ; 39(7): 1390-1401, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31242030

RESUMEN

Objective- Activation of coagulation FXI (factor XI) by FXIIa (activated factor XII) is a prothrombotic process. The endothelium is known to play an antithrombotic role by limiting thrombin generation and platelet activation. It is unknown whether the antithrombotic role of the endothelium includes sequestration of FXIa (activated factor XI) activity. This study aims to determine the role of endothelial cells (ECs) in the regulation of the intrinsic pathway of coagulation. Approach and Results- Using a chromogenic assay, we observed that human umbilical veins ECs selectively blocked FXIa yet supported kallikrein and FXIIa activity. Western blotting and mass spectrometry analyses revealed that FXIa formed a complex with endothelial PAI-1 (plasminogen activator inhibitor-1). Blocking endothelial PAI-1 increased the cleavage of a chromogenic substrate by FXIa and the capacity of FXIa to promote fibrin formation in plasma. Western blot and immunofluorescence analyses showed that FXIa-PAI-1 complexes were either released into the media or trafficked to the early and late endosomes and lysosomes of ECs. When baboons were challenged with Staphylococcus aureus to induce a prothrombotic phenotype, an increase in circulating FXIa-PAI-1 complex levels was detected by ELISA within 2 to 8 hours postchallenge. Conclusions- PAI-1 forms a complex with FXIa on ECs, blocking its activity and inducing the clearance and degradation of FXIa. Circulating FXIa-PAI-1 complexes were detected in a baboon model of S. aureus sepsis. Although ECs support kallikrein and FXIIa activity, inhibition of FXIa by ECs may promote the clearance of intravascular FXIa. Visual Overview- An online visual overview is available for this article.


Asunto(s)
Coagulación Sanguínea , Células Endoteliales/fisiología , Factor XIa/fisiología , Inhibidor 1 de Activador Plasminogénico/fisiología , Animales , Factor XIa/antagonistas & inhibidores , Factor XIa/química , Humanos , Papio ursinus , Inhibidor 1 de Activador Plasminogénico/química
19.
J Thromb Haemost ; 17(9): 1449-1460, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31125187

RESUMEN

BACKGROUND: The homologous plasma proteins prekallikrein and factor XI (FXI) circulate as complexes with high molecular weight kininogen. Although evidence supports an interaction between the prekallikrein-kininogen complexes and vascular endothelium, there is conflicting information regarding FXI binding to endothelium. OBJECTIVE: To study the interaction between FXI and blood vessels in mice. METHODS: C57Bl/6 wild-type or F11-/- mice in which variants of FXI were expressed by hydrodynamic tail vein injection, received intravenous infusions of saline, heparin, polyphosphates, protamine, or enzymes that digest glycosaminoglycans (GAGs). Blood was collected after infusion and plasma was analyzed by western blot for FXI. RESULTS AND CONCLUSIONS: Plasma FXI increased 5- to 10-fold in wild-type mice after infusion of heparin, polyphosphates, protamine, or GAG-digesting enzymes, but not saline. Similar treatments resulted in a much smaller change in plasma FXI levels in rats, and infusions of large boluses of heparin did not change FXI levels appreciably in baboons or humans. The releasable FXI fraction was reconstituted in F11-/- mice by expressing murine FXI, but not human FXI. We identified a cluster of basic residues on the apple 4 domain of mouse FXI that is not present in other species. Replacing the basic residues with alanine prevented the interaction of mouse FXI with blood vessels, whereas introducing the basic residues into human FXI allowed it to bind to blood vessels. Most FXI in mice is noncovalently associated with GAGs on blood vessel endothelium and does not circulate in plasma.


Asunto(s)
Endotelio Vascular/metabolismo , Factor XI/metabolismo , Glicosaminoglicanos/sangre , Animales , Sitios de Unión , Trombosis de las Arterias Carótidas/sangre , Trombosis de las Arterias Carótidas/inducido químicamente , Cloruros/toxicidad , Factor XI/química , Deficiencia del Factor XI/sangre , Compuestos Férricos/toxicidad , Heparina/farmacología , Humanos , Quininógenos/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Moleculares , Papio , Precalicreína/metabolismo , Unión Proteica , Conformación Proteica , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Especificidad de la Especie , Electricidad Estática
20.
Arterioscler Thromb Vasc Biol ; 39(4): 799-809, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30700130

RESUMEN

Objective- Factor XI (FXI) contributes to thrombotic disease while playing a limited role in normal hemostasis. We generated a unique, humanized anti-FXI antibody, AB023, which blocks factor XIIa-mediated FXI activation without inhibiting FXI activation by thrombin or the procoagulant function of FXIa. We sought to confirm the antithrombotic activity of AB023 in a baboon thrombosis model and to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics in healthy adult subjects. Approach and Results- In a primate model of acute vascular graft thrombosis, AB023 reduced platelet and fibrin accumulation within the grafts by >75%. To evaluate the safety of AB023, we performed a first-in-human study in healthy adult volunteers without any serious adverse events. Overall, 10 of 21 (48%) subjects experienced 20 treatment-emergent adverse events, with 7 of 16 (44%) subjects following active treatment and 3 of 5 (60%) subjects following placebo. AB023 did not increase bleeding or prothrombin times. Anticoagulation was verified by a saturable ≈2-fold prolongation of the partial thromboplastin time for over 1 month after the highest dose. Conclusions- AB023, which inhibits contact activation-initiated blood coagulation in vitro and experimental thrombus formation in primates, produced a dose-dependent duration of limited anticoagulation without drug-related adverse effects in a phase 1 trial. When put in context with earlier observations suggesting that FXI contributes to venous thromboembolism and cardiovascular disease, although contributing minimally to hemostasis, our data further justify clinical evaluation of AB023 in conditions where contact-initiated FXI activation is suspected to have a pathogenic role. Clinical Trial Registration- URL: http://www.clinicaltrials.gov . Unique identifier: NCT03097341.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticoagulantes/uso terapéutico , Factor XI/antagonistas & inhibidores , Factor XIa/fisiología , Fibrinolíticos/uso terapéutico , Adulto , Animales , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/inmunología , Anticuerpos Monoclonales Humanizados/farmacología , Anticoagulantes/efectos adversos , Anticoagulantes/inmunología , Anticoagulantes/farmacología , Área Bajo la Curva , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Factor XI/inmunología , Factor XIIa/fisiología , Fibrinolíticos/efectos adversos , Fibrinolíticos/inmunología , Fibrinolíticos/farmacología , Oclusión de Injerto Vascular/tratamiento farmacológico , Humanos , Papio , Tiempo de Tromboplastina Parcial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...