Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 235(4): 1379-1393, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35596716

RESUMEN

Photosynthetic carbon fixation is often limited by CO2 availability, which led to the evolution of CO2 concentrating mechanisms (CCMs). Some diatoms possess CCMs that employ biochemical fixation of bicarbonate, similar to C4 plants, but whether biochemical CCMs are commonly found in diatoms is a subject of debate. In the diatom Phaeodactylum tricornutum, phosphoenolpyruvate carboxylase (PEPC) is present in two isoforms, PEPC1 in the plastids and PEPC2 in the mitochondria. We used real-time quantitative polymerase chain reaction, Western blots, and enzymatic assays to examine PEPC expression and PEPC activity, under low and high concentrations of dissolved inorganic carbon (DIC). We generated and analyzed individual knockout cell lines of PEPC1 and PEPC2, as well as a PEPC1/2 double-knockout strain. While we could not detect an altered phenotype in the PEPC1 knockout strains at ambient, low or high DIC concentrations, PEPC2 and the double-knockout strains grown under ambient air or lower DIC availability conditions showed reduced growth and photosynthetic affinity for DIC while behaving similarly to wild-type (WT) cells at high DIC concentrations. These mutants furthermore exhibited significantly lower 13 C/12 C ratios compared to the WT. Our data imply that in P. tricornutum at least parts of the CCM rely on biochemical bicarbonate fixation catalyzed by the mitochondrial PEPC2.


Asunto(s)
Diatomeas , Bicarbonatos/metabolismo , Carbono/metabolismo , Ciclo del Carbono , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacología , Diatomeas/metabolismo , Mitocondrias/metabolismo , Fosfoenolpiruvato Carboxilasa/genética , Fosfoenolpiruvato Carboxilasa/metabolismo , Fotosíntesis
2.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34204357

RESUMEN

Heme biosynthesis is essential for almost all living organisms. Despite its conserved function, the pathway's enzymes can be located in a remarkable diversity of cellular compartments in different organisms. This location does not always reflect their evolutionary origins, as might be expected from the history of their acquisition through endosymbiosis. Instead, the final subcellular localization of the enzyme reflects multiple factors, including evolutionary origin, demand for the product, availability of the substrate, and mechanism of pathway regulation. The biosynthesis of heme in the apicomonad Chromera velia follows a chimeric pathway combining heme elements from the ancient algal symbiont and the host. Computational analyses using different algorithms predict complex targeting patterns, placing enzymes in the mitochondrion, plastid, endoplasmic reticulum, or the cytoplasm. We employed heterologous reporter gene expression in the apicomplexan parasite Toxoplasma gondii and the diatom Phaeodactylum tricornutum to experimentally test these predictions. 5-aminolevulinate synthase was located in the mitochondria in both transfection systems. In T. gondii, the two 5-aminolevulinate dehydratases were located in the cytosol, uroporphyrinogen synthase in the mitochondrion, and the two ferrochelatases in the plastid. In P. tricornutum, all remaining enzymes, from ALA-dehydratase to ferrochelatase, were placed either in the endoplasmic reticulum or in the periplastidial space.


Asunto(s)
Alveolados/fisiología , Apicomplexa/metabolismo , Diatomeas/metabolismo , Hemo/metabolismo , Redes y Vías Metabólicas , Secuencia de Aminoácidos , Transporte Biológico , Evolución Molecular , Regulación Enzimológica de la Expresión Génica , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
3.
Biomolecules ; 10(8)2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32722284

RESUMEN

Fatty acids are essential components of biological membranes, important for the maintenance of cellular structures, especially in organisms with complex life cycles like protozoan parasites. Apicomplexans are obligate parasites responsible for various deadly diseases of humans and livestock. We analyzed the fatty acids produced by the closest phototrophic relatives of parasitic apicomplexans, the chromerids Chromera velia and Vitrella brassicaformis, and investigated the genes coding for enzymes involved in fatty acids biosynthesis in chromerids, in comparison to their parasitic relatives. Based on evidence from genomic and metabolomic data, we propose a model of fatty acid synthesis in chromerids: the plastid-localized FAS-II pathway is responsible for the de novo synthesis of fatty acids reaching the maximum length of 18 carbon units. Short saturated fatty acids (C14:0-C18:0) originate from the plastid are then elongated and desaturated in the cytosol and the endoplasmic reticulum. We identified giant FAS I-like multi-modular enzymes in both chromerids, which seem to be involved in polyketide synthesis and fatty acid elongation. This full-scale description of the biosynthesis of fatty acids and their derivatives provides important insights into the reductive evolutionary transition of a phototropic algal ancestor to obligate parasites.


Asunto(s)
Apicomplexa/metabolismo , Vías Biosintéticas/genética , Ácidos Grasos/biosíntesis , Proteínas Protozoarias/metabolismo , Animales , Apicomplexa/clasificación , Apicomplexa/genética , Evolución Molecular , Ácido Graso Desaturasas/clasificación , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Elongasas de Ácidos Grasos/clasificación , Elongasas de Ácidos Grasos/genética , Elongasas de Ácidos Grasos/metabolismo , Acido Graso Sintasa Tipo I/clasificación , Acido Graso Sintasa Tipo I/genética , Acido Graso Sintasa Tipo I/metabolismo , Acido Graso Sintasa Tipo II/clasificación , Acido Graso Sintasa Tipo II/genética , Acido Graso Sintasa Tipo II/metabolismo , Humanos , Filogenia , Infecciones por Protozoos/parasitología , Proteínas Protozoarias/clasificación , Proteínas Protozoarias/genética , Especificidad de la Especie
4.
Biomolecules ; 9(12)2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31766535

RESUMEN

Plastids, organelles that evolved from cyanobacteria via endosymbiosis in eukaryotes, provide carbohydrates for the formation of biomass and for mitochondrial energy production to the cell. They generate their own energy in the form of the nucleotide adenosine triphosphate (ATP). However, plastids of non-photosynthetic tissues, or during the dark, depend on external supply of ATP. A dedicated antiporter that exchanges ATP against adenosine diphosphate (ADP) plus inorganic phosphate (Pi) takes over this function in most photosynthetic eukaryotes. Additional forms of such nucleotide transporters (NTTs), with deviating activities, are found in intracellular bacteria, and, surprisingly, also in diatoms, a group of algae that acquired their plastids from other eukaryotes via one (or even several) additional endosymbioses compared to algae with primary plastids and higher plants. In this review, we summarize what is known about the nucleotide synthesis and transport pathways in diatom cells, and discuss the evolutionary implications of the presence of the additional NTTs in diatoms, as well as their applications in biotechnology.


Asunto(s)
Diatomeas/metabolismo , Nucleótidos/metabolismo , Evolución Biológica , Transporte Biológico , Biotecnología , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Nucleótidos/biosíntesis
5.
Microorganisms ; 7(8)2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31387253

RESUMEN

In this paper, we describe a novel bacteriophagous biflagellate, Cafileria marina with two smooth flagellae, isolated from material collected from a rock surface in the Kvernesfjorden (Norway). This flagellate was characterized by scanning and transmission electron microscopy, fluorescence, and light microscopy. The sequence of the small subunit ribosomal RNA gene (18S) was used as a molecular marker for determining the phylogenetic position of this organism. Apart from the nuclear ribosomal gene, the whole mitochondrial genome was sequenced, assembled, and annotated. Morphological observations show that the newly described flagellate shares key ultrastructural characters with representatives of the family Bicosoecida (Heterokonta). Intriguingly, mitochondria of C. marina frequently associate with its nucleus through an electron-dense disc at the boundary of the two compartments. The function of this association remains unclear. Phylogenetic analyses corroborate the morphological data and place C. marina with other sequence data of representatives from the family Bicosoecida. We describe C. marina as a new species from a new genus in this family.

6.
Genes (Basel) ; 10(8)2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31370303

RESUMEN

Aminoacyl-tRNA synthetases (AaRSs) are enzymes that catalyze the ligation of tRNAs to amino acids. There are AaRSs specific for each amino acid in the cell. Each cellular compartment in which translation takes place (the cytosol, mitochondria, and plastids in most cases), needs the full set of AaRSs; however, individual AaRSs can function in multiple compartments due to dual (or even multiple) targeting of nuclear-encoded proteins to various destinations in the cell. We searched the genomes of the chromerids, Chromera velia and Vitrella brassicaformis, for AaRS genes: 48 genes encoding AaRSs were identified in C. velia, while only 39 AaRS genes were found in V. brassicaformis. In the latter alga, ArgRS and GluRS were each encoded by a single gene occurring in a single copy; only PheRS was found in three genes, while the remaining AaRSs were encoded by two genes. In contrast, there were nine cases for which C. velia contained three genes of a given AaRS (45% of the AaRSs), all of them representing duplicated genes, except AsnRS and PheRS, which are more likely pseudoparalogs (acquired via horizontal or endosymbiotic gene transfer). Targeting predictions indicated that AaRSs are not (or not exclusively), in most cases, used in the cellular compartment from which their gene originates. The molecular phylogenies of the AaRSs are variable between the specific types, and similar between the two investigated chromerids. While genes with eukaryotic origin are more frequently retained, there is no clear pattern of orthologous pairs between C. velia and V. brassicaformis.


Asunto(s)
Alveolados/genética , Aminoacil-ARNt Sintetasas/genética , Proteínas Protozoarias/genética , Alveolados/clasificación , Alveolados/enzimología , Filogenia
7.
Plant Cell Physiol ; 60(8): 1811-1828, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31179502

RESUMEN

Diatoms are unicellular algae and evolved by secondary endosymbiosis, a process in which a red alga-like eukaryote was engulfed by a heterotrophic eukaryotic cell. This gave rise to plastids of remarkable complex architecture and ultrastructure that require elaborate protein importing, trafficking, signaling and intracellular cross-talk pathways. Studying both plastids and mitochondria and their distinctive physiological pathways in organello may greatly contribute to our understanding of photosynthesis, mitochondrial respiration and diatom evolution. The isolation of such complex organelles, however, is still demanding, and existing protocols are either limited to a few species (for plastids) or have not been reported for diatoms so far (for mitochondria). In this work, we present the first isolation protocol for mitochondria from the model diatom Thalassiosira pseudonana. Apart from that, we extended the protocol so that it is also applicable for the purification of a high-quality plastids fraction, and provide detailed structural and physiological characterizations of the resulting organelles. Isolated mitochondria were structurally intact, showed clear evidence of mitochondrial respiration, but the fractions still contained residual cell fragments. In contrast, plastid isolates were virtually free of cellular contaminants, featured structurally preserved thylakoids performing electron transport, but lost most of their stromal components as concluded from Western blots and mass spectrometry. Liquid chromatography electrospray-ionization mass spectrometry studies on mitochondria and thylakoids, moreover, allowed detailed proteome analyses which resulted in extensive proteome maps for both plastids and mitochondria thus helping us to broaden our understanding of organelle metabolism and functionality in diatoms.


Asunto(s)
Diatomeas/metabolismo , Mitocondrias/metabolismo , Plastidios/metabolismo , Proteoma/metabolismo , Tilacoides/metabolismo
8.
Microb Cell ; 6(2): 123-133, 2019 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-30740457

RESUMEN

Mitochondria and plastids evolved from free-living bacteria, but are now considered integral parts of the eukaryotic species in which they live. Therefore, they are implicitly called by the same eukaryotic species name. Historically, mitochondria and plastids were known as "organelles", even before their bacterial origin became fully established. However, since organelle evolution by endosymbiosis has become an established theory in biology, more and more endosymbiotic systems have been discovered that show various levels of host/symbiont integration. In this context, the distinction between "host/symbiont" and "eukaryote/organelle" systems is currently unclear. The criteria that are commonly considered are genetic integration (via gene transfer from the endosymbiont to the nucleus), cellular integration (synchronization of the cell cycles), and metabolic integration (the mutual dependency of the metabolisms). Here, I suggest that these criteria should be evaluated according to the resulting coupling of genetic recombination between individuals and congruence of effective population sizes, which determines if independent speciation is possible for either of the partners. I would like to call this aspect of integration "sexual symbiont integration". If the partners lose their independence in speciation, I think that they should be considered one species. The partner who maintains its genetic recombination mechanisms and life cycle should then be the name giving "host"; the other one would be the organelle. Distinguishing between organelles and symbionts according to their sexual symbiont integration is independent of any particular mechanism or structural property of the endosymbiont/host system under investigation.

9.
PeerJ ; 6: e5884, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30488015

RESUMEN

Most genetic transformation protocols for the model diatom Phaeodactylum tricornutum rely on one of two available antibiotics as selection markers: Zeocin (a formulation of phleomycin D1) or nourseothricin. This limits the number of possible consecutive genetic transformations that can be performed. In order to expand the biotechnological possibilities for P. tricornutum, we searched for additional antibiotics and corresponding resistance genes that might be suitable for use with this diatom. Among the three different antibiotics tested in this study, blasticidin-S and tunicamycin turned out to be lethal to wild-type cells at low concentrations, while voriconazole had no detectable effect on P. tricornutum. Testing the respective resistance genes, we found that the blasticidin-S deaminase gene (bsr) effectively conferred resistance against blasticidin-S to P. tricornutum. Furthermore, we could show that expression of bsr did not lead to cross-resistances against Zeocin or nourseothricin, and that genetically transformed cell lines with resistance against Zeocin or nourseothricin were not resistant against blasticidin-S. In a proof of concept, we also successfully generated double resistant (against blasticidin-S and nourseothricin) P. tricornutum cell lines by co-delivering the bsr vector with a vector conferring nourseothricin resistance to wild-type cells.

10.
Genome Biol Evol ; 10(9): 2310-2325, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30060189

RESUMEN

The establishment of the mitochondrion is seen as a transformational step in the origin of eukaryotes. With the mitochondrion came bioenergetic freedom to explore novel evolutionary space leading to the eukaryotic radiation known today. The tight integration of the bacterial endosymbiont with its archaeal host was accompanied by a massive endosymbiotic gene transfer resulting in a small mitochondrial genome which is just a ghost of the original incoming bacterial genome. This endosymbiotic gene transfer resulted in the loss of many genes, both from the bacterial symbiont as well the archaeal host. Loss of genes encoding redundant functions resulted in a replacement of the bulk of the host's metabolism for those originating from the endosymbiont. Glycolysis is one such metabolic pathway in which the original archaeal enzymes have been replaced by bacterial enzymes from the endosymbiont. Glycolysis is a major catabolic pathway that provides cellular energy from the breakdown of glucose. The glycolytic pathway of eukaryotes appears to be bacterial in origin, and in well-studied model eukaryotes it takes place in the cytosol. In contrast, here we demonstrate that the latter stages of glycolysis take place in the mitochondria of stramenopiles, a diverse and ecologically important lineage of eukaryotes. Although our work is based on a limited sample of stramenopiles, it leaves open the possibility that the mitochondrial targeting of glycolytic enzymes in stramenopiles might represent the ancestral state for eukaryotes.


Asunto(s)
Blastocystis/metabolismo , Diatomeas/metabolismo , Glucólisis , Mitocondrias/metabolismo , Evolución Biológica , Blastocystis/citología , Blastocystis/enzimología , Blastocystis/genética , Diatomeas/citología , Diatomeas/enzimología , Diatomeas/genética , Metabolismo Energético , Genoma Mitocondrial , Mitocondrias/genética , Simbiosis , Transformación Genética
11.
Photosynth Res ; 137(2): 263-280, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29572588

RESUMEN

Diatoms are unicellular algae and important primary producers. The process of carbon fixation in diatoms is very efficient even though the availability of dissolved CO2 in sea water is very low. The operation of a carbon concentrating mechanism (CCM) also makes the more abundant bicarbonate accessible for photosynthetic carbon fixation. Diatoms possess carbonic anhydrases as well as metabolic enzymes potentially involved in C4 pathways; however, the question as to whether a C4 pathway plays a general role in diatoms is not yet solved. While genome analyses indicate that the diatom Phaeodactylum tricornutum possesses all the enzymes required to operate a C4 pathway, silencing of the pyruvate orthophosphate dikinase (PPDK) in a genetically transformed cell line does not lead to reduced photosynthetic carbon fixation. In this study, we have determined the intracellular location of all enzymes potentially involved in C4-like carbon fixing pathways in P. tricornutum by expression of the respective proteins fused to green fluorescent protein (GFP), followed by fluorescence microscopy. Furthermore, we compared the results to known pathways and locations of enzymes in higher plants performing C3 or C4 photosynthesis. This approach revealed that the intracellular distribution of the investigated enzymes is quite different from the one observed in higher plants. In particular, the apparent lack of a plastidic decarboxylase in P. tricornutum indicates that this diatom does not perform a C4-like CCM.


Asunto(s)
Diatomeas/enzimología , Diatomeas/fisiología , Fotosíntesis/fisiología , Arabidopsis/fisiología , Ciclo del Carbono , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Mitocondrias/enzimología , Fosfoenolpiruvato Carboxilasa/clasificación , Fosfoenolpiruvato Carboxilasa/metabolismo , Piruvato Carboxilasa/genética , Piruvato Carboxilasa/metabolismo , Zea mays/fisiología
12.
Philos Trans R Soc Lond B Biol Sci ; 372(1728)2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28717012

RESUMEN

Diatoms are important primary producers in the oceans and can also dominate other aquatic habitats. One reason for the success of this phylogenetically relatively young group of unicellular organisms could be the impressive redundancy and diversity of metabolic isoenzymes in diatoms. This redundancy is a result of the evolutionary origin of diatom plastids by a eukaryote-eukaryote endosymbiosis, a process that implies temporary redundancy of functionally complete eukaryotic genomes. During the establishment of the plastids, this redundancy was partially reduced via gene losses, and was partially retained via gene transfer to the nucleus of the respective host cell. These gene transfers required re-assignment of intracellular targeting signals, a process that simultaneously altered the intracellular distribution of metabolic enzymes compared with the ancestral cells. Genome annotation, the correct assignment of the gene products and the prediction of putative function, strongly depends on the correct prediction of the intracellular targeting of a gene product. Here again diatoms are very peculiar, because the targeting systems for organelle import are partially different to those in land plants. In this review, we describe methods of predicting intracellular enzyme locations, highlight findings of metabolic peculiarities in diatoms and present genome-enabled approaches to study their metabolism.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.


Asunto(s)
Diatomeas/genética , Diatomeas/metabolismo , Evolución Molecular , Redes y Vías Metabólicas , Bioquímica/métodos , Diatomeas/enzimología
13.
Nature ; 541(7638): 536-540, 2017 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-28092920

RESUMEN

The Southern Ocean houses a diverse and productive community of organisms. Unicellular eukaryotic diatoms are the main primary producers in this environment, where photosynthesis is limited by low concentrations of dissolved iron and large seasonal fluctuations in light, temperature and the extent of sea ice. How diatoms have adapted to this extreme environment is largely unknown. Here we present insights into the genome evolution of a cold-adapted diatom from the Southern Ocean, Fragilariopsis cylindrus, based on a comparison with temperate diatoms. We find that approximately 24.7 per cent of the diploid F. cylindrus genome consists of genetic loci with alleles that are highly divergent (15.1 megabases of the total genome size of 61.1 megabases). These divergent alleles were differentially expressed across environmental conditions, including darkness, low iron, freezing, elevated temperature and increased CO2. Alleles with the largest ratio of non-synonymous to synonymous nucleotide substitutions also show the most pronounced condition-dependent expression, suggesting a correlation between diversifying selection and allelic differentiation. Divergent alleles may be involved in adaptation to environmental fluctuations in the Southern Ocean.


Asunto(s)
Aclimatación/genética , Frío , Diatomeas/genética , Evolución Molecular , Genoma/genética , Genómica , Alelos , Dióxido de Carbono/metabolismo , Oscuridad , Diatomeas/metabolismo , Congelación , Perfilación de la Expresión Génica , Flujo Genético , Cubierta de Hielo , Hierro/metabolismo , Tasa de Mutación , Océanos y Mares , Filogenia , Recombinación Genética , Transcriptoma/genética
14.
New Phytol ; 213(1): 193-205, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27504715

RESUMEN

Diatom plastids show several peculiarities when compared with primary plastids of higher plants or algae. They are surrounded by four membranes and depend on nucleotide uptake because, unlike in plants, nucleotide de novo synthesis exclusively occurs in the cytosol. Previous analyses suggest that two specifically adapted nucleotide transporters (NTTs) facilitate the required passage of nucleotides across the innermost plastid membrane. However, nucleotide transport across the additional plastid membranes remains to be clarified. Phylogenetic studies, transport assays with the recombinant protein as well as GFP-based targeting analyses allowed detailed characterization of a novel isoform (PtNTT5) of the six NTTs of Phaeodactylum tricornutum. PtNTT5 exhibits low amino acid similarities and is only distantly related to all previously characterized NTTs. However, in a heterologous expression system, it acts as a nucleotide antiporter and prefers various (deoxy-) purine nucleotides as substrates. Interestingly, PtNTT5 is probably located in the endoplasmic reticulum, which in diatoms also represents the outermost plastid membrane. PtNTT5, with its unusual transport properties, phylogeny and localization, can be taken as further evidence for the establishment of a sophisticated and specifically adapted nucleotide transport system in diatom plastids.


Asunto(s)
Diatomeas/metabolismo , Nucleótidos de Purina/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Antiportadores/metabolismo , Transporte Biológico , Retículo Endoplásmico/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Membranas Intracelulares/metabolismo , Cinética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Modelos Biológicos , Filogenia , Proteínas Recombinantes de Fusión/metabolismo , Especificidad por Sustrato , Factores de Tiempo
15.
PeerJ ; 4: e2344, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27635322

RESUMEN

An essential prerequisite for a controlled transgene expression is the choice of a suitable promoter. In the model diatom Phaeodactylum tricornutum, the most commonly used promoters for trans-gene expression are the light dependent lhcf1 promoters (derived from two endogenous genes encoding fucoxanthin chlorophyll a/c binding proteins) and the nitrate dependent nr promoter (derived from the endogenous nitrate reductase gene). In this study, we investigated the time dependent expression of the green fluorescent protein (GFP) reporter under control of the nitrate reductase promoter in independently genetically transformed P. tricornutum cell lines following induction of expression by change of the nitrogen source in the medium via flow cytometry, microscopy and western blotting. In all investigated cell lines, GFP fluorescence started to increase 1 h after change of the medium, the fastest increase rates were observed between 2 and 3 h. Fluorescence continued to increase slightly for up to 7 h even after transfer of the cells to ammonium medium. The subsequent decrease of GFP fluorescence was much slower than the increase, probably due to the stability of GFP. The investigation of several cell lines transformed with nr based constructs revealed that, also in the absence of nitrate, the promoter may show residual activity. Furthermore, we observed a strong variation of gene expression between independent cell lines, emphasising the importance of a thorough characterisation of genetically modified cell lines and their individual expression patterns.

16.
Plant J ; 81(3): 519-28, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25438865

RESUMEN

The plastids of ecologically and economically important algae from phyla such as stramenopiles, dinoflagellates and cryptophytes were acquired via a secondary endosymbiosis and are surrounded by three or four membranes. Nuclear-encoded plastid-localized proteins contain N-terminal bipartite targeting peptides with the conserved amino acid sequence motif 'ASAFAP'. Here we identify the plastid proteomes of two diatoms, Thalassiosira pseudonana and Phaeodactylum tricornutum, using a customized prediction tool (ASAFind) that identifies nuclear-encoded plastid proteins in algae with secondary plastids of the red lineage based on the output of SignalP and the identification of conserved 'ASAFAP' motifs and transit peptides. We tested ASAFind against a large reference dataset of diatom proteins with experimentally confirmed subcellular localization and found that the tool accurately identified plastid-localized proteins with both high sensitivity and high specificity. To identify nucleus-encoded plastid proteins of T. pseudonana and P. tricornutum we generated optimized sets of gene models for both whole genomes, to increase the percentage of full-length proteins compared with previous assembly model sets. ASAFind applied to these optimized sets revealed that about 8% of the proteins encoded in their nuclear genomes were predicted to be plastid localized and therefore represent the putative plastid proteomes of these algae.


Asunto(s)
Diatomeas/metabolismo , Proteínas/química , Proteoma , Secuencias de Aminoácidos , Proteómica/métodos , Análisis de Secuencia de Proteína , Programas Informáticos
17.
Methods Mol Biol ; 1083: 187-211, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24218217

RESUMEN

In the recent years, a large number of genomes from a variety of different organisms have been sequenced. Most of the sequence data has been publicly released and can be assessed by interested users. However, this wealth of information is currently underexploited by scientists not directly involved in genome annotation. This is partially because sequencing, assembly, and automated annotation can be done much faster than the identification, classification, and prediction of the intracellular localization of the gene products. This part of the annotation process still largely relies on manual curation and addition of contextual information. Users of genome databases who are unfamiliar with the types of data available from (whole) genomes might therefore find themselves either overwhelmed by the vast amount and multiple layers of data or dissatisfied with less-than-meaningful analyses of the data.In this chapter we present procedures and approaches to identify and characterize gene models of enzymes involved in metabolic pathways based on their similarity to known sequences. Furthermore we describe how to predict the subcellular location of the proteins using publicly available prediction servers and how to interpret the obtained results. The strategies we describe are generally applicable to organisms with primary plastids such as land plants or green algae. Additionally, we describe strategies suitable for those groups of algae with secondary plastids (for instance diatoms), which are characterized by a different cellular topology and a larger number of intracellular compartments compared to plants.


Asunto(s)
Genómica , Espacio Intracelular/metabolismo , Redes y Vías Metabólicas , Metabolómica , Transporte Biológico , Biología Computacional/métodos , Bases de Datos Genéticas , Genómica/métodos , Metabolómica/métodos , Sistemas en Línea , Proteínas/genética , Proteínas/metabolismo
19.
PLoS One ; 8(9): e74451, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24073211

RESUMEN

Aureochromes constitute a family of blue light (BL) receptors which are found exclusively in heterokont algae such as diatoms (Bacillariophyceae) and yellow-green algae (Xanthophyceae). Previous studies on the diatom Phaeodactylum tricornutum indicate that the formation of a high light acclimated phenotype is mediated by the absorption of BL and that aureochromes might play an important role in this process. P. tricornutum possesses four genes encoding aureochromes. In this study we confirm the nuclear localisation of the PtAUREO1a, 1b and 2 proteins. Furthermore we studied the physiology of light quality acclimation in genetically transformed P. tricornutum cell lines with reduced expression of the aureochrome 1a gene. The results demonstrate that the AUREO1a protein has a distinct function in light acclimation. However, rather unexpectedly AUREO1a seems to repress high light acclimation which resulted in a state of 'hyper' high light acclimation in aureo1a silenced strains. This was indicated by characteristic changes of several photosynthetic parameters, including increased maximum photosynthesis rates, decreased chlorophyll a contents per cell and increased values of non-photochemical quenching in AUREO1a silenced strains compared to wild type cultures. Strikingly, AUREO1a silenced strains exhibited phenotypic differences compared to wild type cells during cultivation under BL as well as under red light (RL) conditions. Therefore, AUREO1a might influence the RL signalling process, suggesting an interaction of AUREO1a with RL perception pathways.


Asunto(s)
Aclimatación/fisiología , Diatomeas/fisiología , Diatomeas/efectos de la radiación , Luz , Fotorreceptores de Plantas/metabolismo , Fotosíntesis/fisiología , Aclimatación/efectos de la radiación , Secuencia de Bases , Immunoblotting , Datos de Secuencia Molecular , Fotosíntesis/efectos de la radiación , Filogenia
20.
BMC Evol Biol ; 13: 159, 2013 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-23899289

RESUMEN

BACKGROUND: Light, the driving force of photosynthesis, can be harmful when present in excess; therefore, any light harvesting system requires photoprotection. Members of the extended light-harvesting complex (LHC) protein superfamily are involved in light harvesting as well as in photoprotection and are found in the red and green plant lineages, with a complex distribution pattern of subfamilies in the different algal lineages. RESULTS: Here, we demonstrate that the recently discovered "red lineage chlorophyll a/b-binding-like proteins" (RedCAPs) form a monophyletic family within this protein superfamily. The occurrence of RedCAPs was found to be restricted to the red algal lineage, including red algae (with primary plastids) as well as cryptophytes, haptophytes and heterokontophytes (with secondary plastids of red algal origin). Expression of a full-length RedCAP:GFP fusion construct in the diatom Phaeodactylum tricornutum confirmed the predicted plastid localisation of RedCAPs. Furthermore, we observed that similarly to the fucoxanthin chlorophyll a/c-binding light-harvesting antenna proteins also RedCAP transcripts in diatoms were regulated in a diurnal way at standard light conditions and strongly repressed at high light intensities. CONCLUSIONS: The absence of RedCAPs from the green lineage implies that RedCAPs evolved in the red lineage after separation from the the green lineage. During the evolution of secondary plastids, RedCAP genes therefore must have been transferred from the nucleus of the endocytobiotic alga to the nucleus of the host cell, a process that involved complementation with pre-sequences allowing import of the gene product into the secondary plastid bound by four membranes. Based on light-dependent transcription and on localisation data, we propose that RedCAPs might participate in the light (intensity and quality)-dependent structural or functional reorganisation of the light-harvesting antennae of the photosystems upon dark to light shifts as regularly experienced by diatoms in nature. Remarkably, in plastids of the red lineage as well as in green lineage plastids, the phycobilisome based cyanobacterial light harvesting system has been replaced by light harvesting systems that are based on members of the extended LHC protein superfamily, either for one of the photosystems (PS I of red algae) or for both (diatoms). In their proposed function, the RedCAP protein family may thus have played a role in the evolutionary structural remodelling of light-harvesting antennae in the red lineage.


Asunto(s)
Proteínas de Unión a Clorofila/genética , Plastidios/genética , Rhodophyta/genética , Secuencia de Aminoácidos , Proteínas de Unión a Clorofila/metabolismo , Diatomeas/genética , Diatomeas/metabolismo , Evolución Molecular , Datos de Secuencia Molecular , Filogenia , Plastidios/metabolismo , Plastidios/efectos de la radiación , Proteínas/genética , Proteínas/metabolismo , Rhodophyta/clasificación , Rhodophyta/metabolismo , Rhodophyta/efectos de la radiación , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...