Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nat Biomed Eng ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778183

RESUMEN

The functions of non-coding regulatory elements (NCREs), which constitute a major fraction of the human genome, have not been systematically studied. Here we report a method involving libraries of paired single-guide RNAs targeting both ends of an NCRE as a screening system for the Cas9-mediated deletion of thousands of NCREs genome-wide to study their functions in distinct biological contexts. By using K562 and 293T cell lines and human embryonic stem cells, we show that NCREs can have redundant functions, and that many ultra-conserved elements have silencer activity and play essential roles in cell growth and in cellular responses to drugs (notably, the ultra-conserved element PAX6_Tarzan may be critical for heart development, as removing it from human embryonic stem cells led to defects in cardiomyocyte differentiation). The high-throughput screen, which is compatible with single-cell sequencing, may allow for the identification of druggable NCREs.

2.
Res Sq ; 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38410440

RESUMEN

The short-chain fatty acids (SCFA) propionate and butyrate are produced in large amounts by microbial metabolism and have been identified as unique acyl lysine histone marks. In order to better understand the function of these modifications we used ChIP-seq to map the genome-wide location of four short-chain acyl histone marks H3K18pr/bu and H4K12pr/bu in treated and untreated colorectal cancer (CRC) and normal cells, as well as in mouse intestines in vivo. We correlate these marks with open chromatin regions along with gene expression to access the function of the target regions. Our data demonstrate that propionate and butyrate act as promoters of growth, differentiation as well as ion transport. We propose a mechanism involving direct modification of specific genomic regions, resulting in increased chromatin accessibility, and in case of butyrate, opposing effects on the proliferation of normal versus CRC cells.

3.
J Vis Exp ; (203)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38345235

RESUMEN

HAT1, also known as Histone acetyltransferase 1, plays a crucial role in chromatin synthesis by stabilizing and acetylating nascent H4 before nucleosome assembly. It is required for tumor growth in various systems, making it a potential target for cancer treatment. To facilitate the identification of compounds that can inhibit HAT1 enzymatic activity, we have devised an acetyl-click assay for rapid screening. In this simple assay, we employ recombinant HAT1/Rbap46, which is purified from activated human cells. The method utilizes the acetyl-CoA analog 4-pentynoyl-CoA (4P) in a click-chemistry approach. This involves the enzymatic transfer of an alkyne handle through a HAT1-dependent acylation reaction to a biotinylated H4 N-terminal peptide. The captured peptide is then immobilized on neutravidin plates, followed by click-chemistry functionalization with biotin-azide. Subsequently, streptavidin-peroxidase recruitment is employed to oxidize amplex red, resulting in a quantitative fluorescent output. By introducing chemical inhibitors during the acylation reaction, we can quantify enzymatic inhibition based on a reduction of the fluorescence signal. Importantly, this reaction is scalable, allowing for high throughput screening of potential inhibitors for HAT1 enzymatic activity.


Asunto(s)
Química Clic , Histonas , Humanos , Histonas/metabolismo , Acetilación , Histona Acetiltransferasas/metabolismo , Péptidos
4.
bioRxiv ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38293216

RESUMEN

The short-chain fatty acids (SCFA) propionate and butyrate are produced in large amounts by microbial metabolism and have been identified as unique acyl lysine histone marks. In order to better understand the function of these modifications we used ChIP-seq to map the genome-wide location of four short-chain acyl histone marks H3K18pr/bu and H4K12pr/bu in treated and untreated colorectal cancer (CRC) and normal cells, as well as in mouse intestines in vivo . We correlate these marks with open chromatin regions along with gene expression to access the function of the target regions. Our data demonstrate that propionate and butyrate act as promoters of growth, differentiation as well as ion transport. We propose a mechanism involving direct modification of specific genomic regions, resulting in increased chromatin accessibility, and in case of butyrate, opposing effects on the proliferation of normal versus CRC cells.

5.
Proc Natl Acad Sci U S A ; 120(38): e2302489120, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37695911

RESUMEN

Loss of estrogen receptor (ER) pathway activity promotes breast cancer progression, yet how this occurs remains poorly understood. Here, we show that serine starvation, a metabolic stress often found in breast cancer, represses estrogen receptor alpha (ERα) signaling by reprogramming glucose metabolism and epigenetics. Using isotope tracing and time-resolved metabolomic analyses, we demonstrate that serine is required to maintain glucose flux through glycolysis and the TCA cycle to support acetyl-CoA generation for histone acetylation. Consequently, limiting serine depletes histone H3 lysine 27 acetylation (H3K27ac), particularly at the promoter region of ER pathway genes including the gene encoding ERα, ESR1. Mechanistically, serine starvation impairs acetyl-CoA-dependent gene expression by inhibiting the entry of glycolytic carbon into the TCA cycle and down-regulating the mitochondrial citrate exporter SLC25A1, a critical enzyme in the production of nucleocytosolic acetyl-CoA from glucose. Consistent with this model, total H3K27ac and ERα expression are suppressed by SLC25A1 inhibition and restored by acetate, an alternate source of acetyl-CoA, in serine-free conditions. We thus uncover an unexpected role for serine in sustaining ER signaling through the regulation of acetyl-CoA metabolism.


Asunto(s)
Receptor alfa de Estrógeno , Histonas , Acetilcoenzima A , Receptor alfa de Estrógeno/genética , Histonas/genética , Receptores de Estrógenos , Glucosa
6.
J Med Chem ; 66(8): 5774-5801, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37027002

RESUMEN

HAT1 is a central regulator of chromatin synthesis that acetylates nascent histone H4. To ascertain whether targeting HAT1 is a viable anticancer treatment strategy, we sought to identify small-molecule inhibitors of HAT1 by developing a high-throughput HAT1 acetyl-click assay. Screening of small-molecule libraries led to the discovery of multiple riboflavin analogs that inhibited HAT1 enzymatic activity. Compounds were refined by synthesis and testing of over 70 analogs, which yielded structure-activity relationships. The isoalloxazine core was required for enzymatic inhibition, whereas modifications of the ribityl side chain improved enzymatic potency and cellular growth suppression. One compound (JG-2016 [24a]) showed relative specificity toward HAT1 compared to other acetyltransferases, suppressed the growth of human cancer cell lines, impaired enzymatic activity in cellulo, and interfered with tumor growth. This is the first report of a small-molecule inhibitor of the HAT1 enzyme complex and represents a step toward targeting this pathway for cancer therapy.


Asunto(s)
Histonas , Neoplasias , Humanos , Histonas/metabolismo , Histona Acetiltransferasas/metabolismo , Cromatina , Línea Celular , Acetilación
8.
Cancer Res ; 83(2): 181-194, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36318118

RESUMEN

The Warburg effect is the major metabolic hallmark of cancer. According to Warburg himself, the consequence of the Warburg effect is cell dedifferentiation. Therefore, reversing the Warburg effect might be an approach to restore cell differentiation in cancer. In this study, we used a mitochondrial uncoupler, niclosamide ethanolamine (NEN), to activate mitochondrial respiration, which induced neural differentiation in neuroblastoma cells. NEN treatment increased the NAD+/NADH and pyruvate/lactate ratios and also the α-ketoglutarate/2-hydroxyglutarate (2-HG) ratio. Consequently, NEN treatment induced promoter CpG island demethylation and epigenetic landscape remodeling, activating the neural differentiation program. In addition, NEN treatment upregulated p53 but downregulated N-Myc and ß-catenin signaling in neuroblastoma cells. Importantly, even under hypoxia, NEN treatment remained effective in inhibiting 2-HG generation, promoting DNA demethylation, and suppressing hypoxia-inducible factor signaling. Dietary NEN intervention reduced tumor growth rate, 2-HG levels, and expression of N-Myc and ß-catenin in tumors in an orthotopic neuroblastoma mouse model. Integrative analysis indicated that NEN treatment upregulated favorable prognosis genes and downregulated unfavorable prognosis genes, which were defined using multiple neuroblastoma patient datasets. Altogether, these results suggest that mitochondrial uncoupling is an effective metabolic and epigenetic therapy for reversing the Warburg effect and inducing differentiation in neuroblastoma. SIGNIFICANCE: Targeting cancer metabolism using the mitochondrial uncoupler niclosamide ethanolamine leads to methylome reprogramming and differentiation in neuroblastoma, providing a therapeutic opportunity to reverse the Warburg effect and suppress tumor growth. See related commentary by Byrne and Bell, p.167.


Asunto(s)
Diferenciación Celular , Epigenoma , Neuroblastoma , Efecto Warburg en Oncología , Animales , Ratones , beta Catenina/genética , Diferenciación Celular/genética , Línea Celular Tumoral , Epigenoma/genética , Epigenoma/fisiología , Etanolamina/farmacología , Etanolamina/uso terapéutico , Etanolaminas/uso terapéutico , Hipoxia/tratamiento farmacológico , Neuroblastoma/genética , Neuroblastoma/patología , Niclosamida/farmacología , Efecto Warburg en Oncología/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/fisiología
9.
Nat Cancer ; 3(10): 1181-1191, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36253484

RESUMEN

Talazoparib, a PARP inhibitor, is active in germline BRCA1 and BRCA2 (gBRCA1/2)-mutant advanced breast cancer, but its activity beyond gBRCA1/2 is poorly understood. We conducted Talazoparib Beyond BRCA ( NCT02401347 ), an open-label phase II trial, to evaluate talazoparib in patients with pretreated advanced HER2-negative breast cancer (n = 13) or other solid tumors (n = 7) with mutations in homologous recombination (HR) pathway genes other than BRCA1 and BRCA2. In patients with breast cancer, four patients had a Response Evaluation Criteria in Solid Tumors (RECIST) partial response (overall response rate, 31%), and three additional patients had stable disease of ≥6 months (clinical benefit rate, 54%). All patients with germline mutations in PALB2 (gPALB2; encoding partner and localizer of BRCA2) had treatment-associated tumor regression. Tumor or plasma circulating tumor DNA (ctDNA) HR deficiency (HRD) scores were correlated with treatment outcomes and were increased in all gPALB2 tumors. In addition, a gPALB2-associated mutational signature was associated with tumor response. Thus, talazoparib has been demonstrated to have efficacy in patients with advanced breast cancer who have gPALB2 mutations, showing activity in the context of HR pathway gene mutations beyond gBRCA1/2.


Asunto(s)
Neoplasias de la Mama , ADN Tumoral Circulante , Humanos , Femenino , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Recombinación Homóloga , Neoplasias de la Mama/tratamiento farmacológico , Mutación , Proteína BRCA1/genética , Proteína BRCA2/genética
10.
J Immunother Cancer ; 10(2)2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35131861

RESUMEN

BACKGROUND: Despite significant progress in cancer immunotherapy in recent years, resistance to existing immune checkpoint therapies (ICT) is common. V-domain Ig suppressor of T cell activation (VISTA), a predominantly myeloid immune checkpoint regulator, represents a promising therapeutic target due to its role in suppressing proinflammatory antitumor responses in myeloid-enriched tumor microenvironments. However, uncertainty around the cognate VISTA ligand has made the development of effective anti-VISTA antibodies challenging. The expression of VISTA on normal immune cell subtypes argues for a neutralizing non-depleting antibody, however, previous reported anti-VISTA antibodies use IgG1 Fc isotypes that deplete VISTA+ cells by antibody dependent cellular cytotoxicity/complement dependent cytotoxicity and these antibodies have shown fast serum clearance and immune toxicities. METHOD: Here we used a rational antibody discovery approach to develop the first Fc-independent anti-VISTA antibody, HMBD-002, that binds a computationally predicted functional epitope within the C-C-loop, distinct from other known anti-VISTA antibodies. This epitope is species-conserved allowing robust in vitro and in vivo testing of HMBD-002 in human and murine models of immune activation and cancer including humanized mouse models. RESULTS: We demonstrate here that blockade by HMBD-002 inhibits VISTA binding to potential partners, including V-Set and Immunoglobulin domain containing 3, to reduce myeloid-derived suppression of T cell activity and prevent neutrophil migration. Analysis of immune cell milieu suggests that HMBD-002 treatment stimulates a proinflammatory phenotype characterized by a Th1/Th17 response, recapitulating a phenotype previously noted in VISTA knockout models. This mechanism of action is further supported by immune-competent syngenic and humanized mouse models of colorectal, breast and lung cancer where neutralizing VISTA, without depleting VISTA expressing cells, significantly inhibited tumor growth while decreasing infiltration of suppressive myeloid cells and increasing T cell activity. Finally, we did not observe either the fast serum clearance or immune toxicities that have been reported for IgG1 antibodies. CONCLUSION: In conclusion, we have shown that VISTA-induced immune suppression can be reversed by blockade of the functional C-C' loop region of VISTA with a first-in-class rationally targeted and non-depleting IgG4 isotype anti-VISTA antibody, HMBD-002. This antibody represents a highly promising novel therapy in the VISTA-suppressed ICT non-responder population.


Asunto(s)
Terapia de Inmunosupresión/métodos , Activación de Linfocitos/inmunología , Neoplasias/inmunología , Receptores Fc/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Microambiente Tumoral
11.
Nat Commun ; 12(1): 5732, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34593797

RESUMEN

Although alterations in chromatin structure are known to exist in tumors, how these alterations relate to molecular phenotypes in cancer remains to be demonstrated. Multi-omics profiling of human tumors can provide insight into how alterations in chromatin structure are propagated through the pathway of gene expression to result in malignant protein expression. We applied multi-omics profiling of chromatin accessibility, RNA abundance, and protein abundance to 36 human thyroid cancer primary tumors, metastases, and patient-match normal tissue. Through quantification of chromatin accessibility associated with active transcription units and global protein expression, we identify a local chromatin structure that is highly correlated with coordinated RNA and protein expression. In particular, we identify enhancers located within gene-bodies as predictive of correlated RNA and protein expression, that is independent of overall transcriptional activity. To demonstrate the generalizability of these findings we also identify similar results in an independent cohort of human breast cancers. Taken together, these analyses suggest that local enhancers, rather than distal enhancers, are likely most predictive of cancer gene expression phenotypes. This allows for identification of potential targets for cancer therapeutic approaches and reinforces the utility of multi-omics profiling as a methodology to understand human disease.


Asunto(s)
Neoplasias de la Mama/genética , Cromatina/metabolismo , Regulación Neoplásica de la Expresión Génica , Cáncer Papilar Tiroideo/genética , Neoplasias de la Tiroides/genética , Neoplasias de la Mama/patología , Secuenciación de Inmunoprecipitación de Cromatina , Estudios de Cohortes , Conjuntos de Datos como Asunto , Elementos de Facilitación Genéticos , Epigénesis Genética , Femenino , Redes Reguladoras de Genes , Humanos , Masculino , Regiones Promotoras Genéticas , Proteómica , ARN/metabolismo , RNA-Seq , Cáncer Papilar Tiroideo/patología , Cáncer Papilar Tiroideo/cirugía , Glándula Tiroides/patología , Glándula Tiroides/cirugía , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/cirugía , Tiroidectomía , Factores de Transcripción/metabolismo
12.
Cell Death Dis ; 11(2): 102, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32029721

RESUMEN

Despite the fact that Otto H. Warburg discovered the Warburg effect almost one hundred years ago, why cancer cells waste most of the glucose carbon as lactate remains an enigma. Warburg proposed a connection between the Warburg effect and cell dedifferentiation. Hypoxia is a common tumor microenvironmental stress that induces the Warburg effect and blocks tumor cell differentiation. The underlying mechanism by which this occurs is poorly understood, and no effective therapeutic strategy has been developed to overcome this resistance to differentiation. Using a neuroblastoma differentiation model, we discovered that hypoxia repressed cell differentiation through reducing cellular acetyl-CoA levels, leading to reduction of global histone acetylation and chromatin accessibility. The metabolic switch triggering this global histone hypoacetylation was the induction of pyruvate dehydrogenase kinases (PDK1 and PDK3). Inhibition of PDKs using dichloroacetate (DCA) restored acetyl-CoA generation and histone acetylation under hypoxia. Knocking down PDK1 induced neuroblastoma cell differentiation, highlighting the critical role of PDK1 in cell fate control. Importantly, acetate or glycerol triacetate (GTA) supplementation restored differentiation markers expression and neuron differentiation under hypoxia. Moreover, ATAC-Seq analysis demonstrated that hypoxia treatment significantly reduced chromatin accessibility at RAR/RXR binding sites, which can be restored by acetate supplementation. In addition, hypoxia-induced histone hypermethylation by increasing 2-hydroxyglutarate (2HG) and reducing α-ketoglutarate (αKG). αKG supplementation reduced histone hypermethylation upon hypoxia, but did not restore histone acetylation or differentiation markers expression. Together, these findings suggest that diverting pyruvate flux away from acetyl-CoA generation to lactate production is the key mechanism that Warburg effect drives dedifferentiation and tumorigenesis. We propose that combining differentiation therapy with acetate/GTA supplementation might represent an effective therapy against neuroblastoma.


Asunto(s)
Acetatos/farmacología , Antineoplásicos/farmacología , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Neuroblastoma/tratamiento farmacológico , Neurogénesis/efectos de los fármacos , Efecto Warburg en Oncología/efectos de los fármacos , Acetilación , Animales , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Humanos , Masculino , Ratones , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patología , Proyección Neuronal/efectos de los fármacos , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Transducción de Señal , Carga Tumoral/efectos de los fármacos , Hipoxia Tumoral , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Clin Cancer Res ; 26(11): 2704-2710, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31796517

RESUMEN

PURPOSE: Patients with triple-negative breast cancer (TNBC) with homologous recombination deficient tumors achieve significantly higher pathologic complete response (pCR) rates when treated with neoadjuvant platinum-based therapy. Tumor-infiltrating lymphocytes (TIL) are prognostic and predictive of chemotherapy benefit in early stage TNBC. The relationship between TILs, BRCA1/2 mutation status, and homologous recombination deficiency (HRD) status in TNBC remains unclear. EXPERIMENTAL DESIGN: We performed a pooled analysis of five phase II studies that included patients with TNBC treated with neoadjuvant platinum-based chemotherapy to evaluate the association of TILs with HRD status (Myriad Genetics) and tumor BRCA1/2 mutation status. Furthermore, the relationship between pathologic response assessed using the residual cancer burden (RCB) index and HRD status with adjustment for TILs was evaluated. RESULTS: Among 161 patients, stromal TIL (sTIL) density was not significantly associated with HRD status (P = 0.107) or tumor BRCA1/2 mutation status (P = 0.391). In multivariate analyses, sTIL density [OR, 1.23; 95% confidence interval (CI), 0.94-1.61; P = 0.139] was not associated with pCR, but was associated with RCB 0/I status (OR 1.62; 95% CI, 1.20-2.28; P = 0.001). HRD was significantly associated with both pCR (OR 12.09; 95% CI, 4.11-44.29; P = 7.82 × 10-7) and RCB 0/I (OR 10.22; 95% CI, 4.11-28.75; P = 1.09 × 10-7) in these models. CONCLUSIONS: In patients with TNBC treated with neoadjuvant platinum-based therapy, TIL density was not significantly associated with either tumor BRCA1/2 mutation status or HRD status. In this pooled analysis, HRD and sTIL density were independently associated with treatment response, with HRD status being the strongest predictor.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , Biomarcadores de Tumor/genética , Recombinación Homóloga , Linfocitos Infiltrantes de Tumor/inmunología , Mutación , Neoplasias de la Mama Triple Negativas/patología , Adulto , Anciano , Ensayos Clínicos Fase II como Asunto , Femenino , Estudios de Seguimiento , Humanos , Metaanálisis como Asunto , Persona de Mediana Edad , Estudios Multicéntricos como Asunto , Pronóstico , Estudios Prospectivos , Tasa de Supervivencia , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/cirugía , Adulto Joven
14.
Cell Rep ; 28(8): 2182-2193.e6, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31433991

RESUMEN

Individuals with a single functional copy of the BRCA2 tumor suppressor have elevated risks for breast, ovarian, and other solid tumor malignancies. The exact mechanisms of carcinogenesis due to BRCA2 haploinsufficiency remain unclear, but one possibility is that at-risk cells are subject to acute periods of decreased BRCA2 availability and function ("BRCA2-crisis"), which may contribute to disease. Here, we establish an in vitro model for BRCA2-crisis that demonstrates chromatin remodeling and activation of an NF-κB survival pathway in response to transient BRCA2 depletion. Mechanistically, we identify BRCA2 chromatin binding, histone acetylation, and associated transcriptional activity as critical determinants of the epigenetic response to BRCA2-crisis. These chromatin alterations are reflected in transcriptional profiles of pre-malignant tissues from BRCA2 carriers and, therefore, may reflect natural steps in human disease. By modeling BRCA2-crisis in vitro, we have derived insights into pre-neoplastic molecular alterations that may enhance the development of preventative therapies.


Asunto(s)
Proteína BRCA2/metabolismo , Ensamble y Desensamble de Cromatina , Animales , Proteína BRCA2/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Línea Celular , Proliferación Celular , Cromatina/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Femenino , Eliminación de Gen , Regulación de la Expresión Génica , Humanos , Ratones , Mutación/genética , FN-kappa B/metabolismo , Transducción de Señal , Transcripción Genética , Transcriptoma/genética
15.
Nat Biomed Eng ; 3(12): 1009-1019, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31285581

RESUMEN

In breast cancer, the increased stiffness of the extracellular matrix is a key driver of malignancy. Yet little is known about the epigenomic changes that underlie the tumorigenic impact of extracellular matrix mechanics. Here, we show in a three-dimensional culture model of breast cancer that stiff extracellular matrix induces a tumorigenic phenotype through changes in chromatin state. We found that increased stiffness yielded cells with more wrinkled nuclei and with increased lamina-associated chromatin, that cells cultured in stiff matrices displayed more accessible chromatin sites, which exhibited footprints of Sp1 binding, and that this transcription factor acts along with the histone deacetylases 3 and 8 to regulate the induction of stiffness-mediated tumorigenicity. Just as cell culture on soft environments or in them rather than on tissue-culture plastic better recapitulates the acinar morphology observed in mammary epithelium in vivo, mammary epithelial cells cultured on soft microenvironments or in them also more closely replicate the in vivo chromatin state. Our results emphasize the importance of culture conditions for epigenomic studies, and reveal that chromatin state is a critical mediator of mechanotransduction.


Asunto(s)
Neoplasias de la Mama , Cromatina , Epitelio , Fenotipo , Neoplasias de la Mama/patología , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Células Epiteliales , Epitelio/patología , Matriz Extracelular/metabolismo , Femenino , Humanos , Mecanotransducción Celular , Factor de Transcripción Sp1 , Factores de Transcripción , Microambiente Tumoral
16.
Mol Cell ; 75(4): 711-724.e5, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31278053

RESUMEN

The energetic costs of duplicating chromatin are large and therefore likely depend on nutrient sensing checkpoints and metabolic inputs. By studying chromatin modifiers regulated by epithelial growth factor, we identified histone acetyltransferase 1 (HAT1) as an induced gene that enhances proliferation through coordinating histone production, acetylation, and glucose metabolism. In addition to its canonical role as a cytoplasmic histone H4 acetyltransferase, we isolated a HAT1-containing complex bound specifically at promoters of H4 genes. HAT1-dependent transcription of H4 genes required an acetate-sensitive promoter element. HAT1 expression was critical for S-phase progression and maintenance of H3 lysine 9 acetylation at proliferation-associated genes, including histone genes. Therefore, these data describe a feedforward circuit whereby HAT1 captures acetyl groups on nascent histones and drives H4 production by chromatin binding to support chromatin replication and acetylation. These findings have important implications for human disease, since high HAT1 levels associate with poor outcomes across multiple cancer types.


Asunto(s)
Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Regiones Promotoras Genéticas , Fase S , Transcripción Genética , Células A549 , Acetilación , Animales , Cromatina/genética , Cromatina/metabolismo , Femenino , Histona Acetiltransferasas/genética , Histonas/genética , Humanos , Ratones , Ratones Endogámicos BALB C , Proteínas de Neoplasias/genética , Neoplasias/genética
17.
Clin Cancer Res ; 25(17): 5301-5314, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31175093

RESUMEN

PURPOSE: Understanding and explaining hereditary predisposition to cancer has focused on the genetic etiology of the disease. However, mutations in known genes associated with breast cancer, such as BRCA1 and BRCA2, account for less than 25% of familial cases of breast cancer. Recently, specific epigenetic modifications at BRCA1 have been shown to promote hereditary breast cancer, but the broader potential for epigenetic contribution to hereditary breast cancer is not yet well understood. EXPERIMENTAL DESIGN: We examined DNA methylation through deep bisulfite sequencing of CpG islands and known promoter or regulatory regions in peripheral blood DNA from 99 patients with familial or early-onset breast or ovarian cancer, 6 unaffected BRCA mutation carriers, and 49 unaffected controls. RESULTS: In 9% of patients, we observed altered methylation in the promoter regions of genes known to be involved in cancer, including hypermethylation at the tumor suppressor PTEN and hypomethylation at the proto-oncogene TEX14. These alterations occur in the form of allelic methylation that span up to hundreds of base pairs in length. CONCLUSIONS: Our observations suggest a broader role for DNA methylation in early-onset, familial risk breast cancer. Further studies are warranted to clarify these mechanisms and the benefits of DNA methylation screening for early risk prediction of familial cancers.


Asunto(s)
Neoplasias de la Mama/genética , Metilación de ADN , Síndromes Neoplásicos Hereditarios/genética , Adulto , Proteína BRCA1/genética , Proteína BRCA2/genética , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Neoplasias de la Mama/sangre , Neoplasias de la Mama/patología , Estudios de Casos y Controles , Islas de CpG , Epigenómica , Femenino , Predisposición Genética a la Enfermedad , Humanos , Persona de Mediana Edad , Síndromes Neoplásicos Hereditarios/sangre , Síndromes Neoplásicos Hereditarios/patología , Fosfohidrolasa PTEN/genética , Regiones Promotoras Genéticas , Proto-Oncogenes Mas , Sulfitos/química , Factores de Transcripción/genética , Adulto Joven
18.
Sci Rep ; 8(1): 12960, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30154523

RESUMEN

13-cis-retinoic acid (isotretinoin, INN) is an oral pharmaceutical drug used for the treatment of skin acne, and is also a known teratogen. In this study, the molecular mechanisms underlying INN-induced developmental toxicity during early cardiac differentiation were investigated using both human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs). Pre-exposure of hiPSCs and hESCs to a sublethal concentration of INN did not influence cell proliferation and pluripotency. However, mesodermal differentiation was disrupted when INN was included in the medium during differentiation. Transcriptomic profiling by RNA-seq revealed that INN exposure leads to aberrant expression of genes involved in several signaling pathways that control early mesoderm differentiation, such as TGF-beta signaling. In addition, genome-wide chromatin accessibility profiling by ATAC-seq suggested that INN-exposure leads to enhanced DNA-binding of specific transcription factors (TFs), including HNF1B, SOX10 and NFIC, often in close spatial proximity to genes that are dysregulated in response to INN treatment. Altogether, these results identify potential molecular mechanisms underlying INN-induced perturbation during mesodermal differentiation in the context of cardiac development. This study further highlights the utility of human stem cells as an alternative system for investigating congenital diseases of newborns that arise as a result of maternal drug exposure during pregnancy.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Corazón/embriología , Células Madre Embrionarias Humanas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Isotretinoína/farmacología , Mesodermo/metabolismo , Línea Celular , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Humanos , Transducción de Señal/efectos de los fármacos
20.
Oncologist ; 20(2): 113-26, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25616432

RESUMEN

BACKGROUND: The treatment of differentiated thyroid cancer refractory to radioactive iodine (RAI) had been hampered by few effective therapies. Recently, tyrosine kinase inhibitors (TKIs) have shown activity in this disease. Clinical guidance on the use of these agents in RAI-refractory thyroid cancer is warranted. MATERIALS AND METHODS: Molecular mutations found in RAI-refractory thyroid cancer are summarized. Recent phase II and III clinical trial data for TKIs axitinib, lenvatinib, motesanib, pazopanib, sorafenib, sunitinib, and vandetinib are reviewed including efficacy and side effect profiles. Molecular targets and potencies of these agents are compared. Inhibitors of BRAF, mammalian target of rapamycin, and MEK are considered. RESULTS: Routine testing for molecular alterations prior to therapy is not yet recommended. TKIs produce progression-free survival of approximately 1 year (range: 7.7-19.6 months) and partial response rates of up to 50% by Response Evaluation Criteria in Solid Tumors. Pazopanib and lenvatinib are the most active agents. The majority of patients experienced tumor shrinkage with TKIs. Common adverse toxicities affect dermatologic, gastrointestinal, and cardiovascular systems. CONCLUSION: Multiple TKIs have activity in RAI-refractory differentiated thyroid cancer. Selection of a targeted agent should depend on disease trajectory, side effect profile, and goals of therapy.


Asunto(s)
Inhibidores de Proteínas Quinasas/uso terapéutico , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/genética , Supervivencia sin Enfermedad , Humanos , Indoles/uso terapéutico , Radioisótopos de Yodo/efectos adversos , Quinasa 1 de Quinasa de Quinasa MAP/genética , Niacinamida/análogos & derivados , Niacinamida/genética , Niacinamida/uso terapéutico , Oligonucleótidos , Compuestos de Fenilurea/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/genética , Sorafenib , Neoplasias de la Tiroides/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA