Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neurobiol Dis ; 132: 104609, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31494284

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disorder whereby loss of midbrain dopaminergic neurons results in motor dysfunction. Transplantation of human induced pluripotent stem cells (iPSCs) into the brain of patients affected by PD is one of the therapeutic approaches that has gained interest to compensate for the degeneration of neurons and improve disease symptoms. However, only a part of transplanted cells can differentiate into mature neurons while the majority remains in undifferentiated state. Here we investigated whether human neuronal precursor cells (hNPCs) derived from iPSCs have an active role in α-synuclein (α-syn) pathology. Our findings demonstrate that α-syn fibrils are taken up by hNPCs and are preferentially localized in lysosomes where they can be degraded. However, α-syn fibrils are also transferred between hNPCs in a cell-to-cell contact dependent manner, and are found in tunneling nanotube (TNT)-like structures. Thus, NPCs can have a dual role in the progression of α-syn pathology, which should be considered in human transplants.


Asunto(s)
Comunicación Celular/fisiología , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/ultraestructura , Endocitosis/fisiología , alfa-Sinucleína/metabolismo , Humanos , Células Madre Pluripotentes Inducidas , Lisosomas/metabolismo , Células-Madre Neurales/metabolismo
2.
Sci Rep ; 9(1): 5741, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30952909

RESUMEN

Tunneling nanotubes (TNTs) are actin-containing membrane protrusions that play an essential role in long-range intercellular communication. They are involved in development of various diseases by allowing transfer of pathogens or protein aggregates as well as organelles such as mitochondria. Increase in TNT formation has been linked to many pathological conditions. Here we show that nM concentrations of tolytoxin, a cyanobacterial macrolide that targets actin by inhibition of its polymerization, significantly decrease the number of TNT-connected cells, as well as transfer of mitochondria and α-synuclein fibrils in two different cell lines of neuronal (SH-SY5Y) and epithelial (SW13) origin. As the cytoskeleton of the tested cell remain preserved, this macrolide could serve as a valuable tool for future therapies against diseases propagated by TNTs.


Asunto(s)
Comunicación Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Neuronas/efectos de los fármacos , Piranos/farmacología , Actinas/metabolismo , Línea Celular , Membrana Celular/metabolismo , Células Epiteliales/metabolismo , Humanos , Neuronas/metabolismo
3.
Cereb Cortex ; 29(12): 4903-4918, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30821834

RESUMEN

Neocortical astrogenesis follows neuronogenesis and precedes oligogenesis. Among key factors dictating its temporal articulation, there are progression rates of pallial stem cells (SCs) towards astroglial lineages as well as activation rates of astrocyte differentiation programs in response to extrinsic gliogenic cues. In this study, we showed that high Foxg1 SC expression antagonizes astrocyte generation, while stimulating SC self-renewal and committing SCs to neuronogenesis. We found that mechanisms underlying this activity are mainly cell autonomous and highly pleiotropic. They include a concerted downregulation of 4 key effectors channeling neural SCs to astroglial fates, as well as defective activation of core molecular machineries implementing astroglial differentiation programs. Next, we found that SC Foxg1 levels specifically decline during the neuronogenic-to-gliogenic transition, pointing to a pivotal Foxg1 role in temporal modulation of astrogenesis. Finally, we showed that Foxg1 inhibits astrogenesis from human neocortical precursors, suggesting that this is an evolutionarily ancient trait.


Asunto(s)
Astrocitos/citología , Factores de Transcripción Forkhead/metabolismo , Neocórtex/embriología , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Neurogénesis/fisiología , Animales , Astrocitos/metabolismo , Diferenciación Celular/fisiología , Humanos , Ratones , Neocórtex/metabolismo , Células-Madre Neurales/metabolismo
4.
Ageing Res Rev ; 50: 89-101, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30690184

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. PD is characterized by the loss of dopaminergic neurons, primarily in brain regions that control motor functions, thereby leading to motor impairments in the patients. Pathological aggregated forms of the synaptic protein, α-synuclein (α-syn), are involved in the generation and progression of PD. In PD brains, α-syn accumulates inside neurons and propagates from cell-to-cell in a prion-like manner. In this review, we discuss the in vitro and in vivo models used to study the prion-like properties of α-syn and related findings. In particular, we focus on the different mechanisms of α-syn spreading, which could be relevant for the development of alternative therapeutic approaches for PD treatment.


Asunto(s)
Encéfalo/metabolismo , Modelos Animales de Enfermedad , Enfermedad de Parkinson/metabolismo , Priones/metabolismo , alfa-Sinucleína/metabolismo , Animales , Encéfalo/patología , Progresión de la Enfermedad , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Humanos , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/metabolismo , Enfermedad de Parkinson/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA