Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PeerJ ; 6: e5163, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30042883

RESUMEN

Acinus is an abundant nuclear protein involved in apoptosis and splicing. It has been implicated in inducing apoptotic chromatin condensation and DNA fragmentation during programmed cell death. Acinus undergoes activation by proteolytic cleavage that produces a truncated p17 form that comprises only the RNA recognition motif (RRM) domain. We have determined the crystal structure of the human Acinus RRM domain (AcRRM) at 1.65 Å resolution. It shows a classical four-stranded antiparallel ß-sheet fold with two flanking α-helices and an additional, non-classical α-helix at the C-terminus, which harbors the caspase-3 target sequence that is cleaved during Acinus activation. In the structure, the C-terminal α-helix partially occludes the potential ligand binding surface of the ß-sheet and hypothetically shields it from non-sequence specific interactions with RNA. Based on the comparison with other RRM-RNA complex structures, it is likely that the C-terminal α-helix changes its conformation with respect to the RRM core in order to enable RNA binding by Acinus.

2.
Methods ; 148: 81-87, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29705209

RESUMEN

Intrinsically disordered proteins (IDPs) are getting more and more interest of the scientific community. Nuclear magnetic resonance (NMR) is often a technique of choice for these studies, as it provides atomic-resolution information on structure, dynamics and interactions of IDPs. Nonetheless, NMR spectra of IDPs are typically extraordinary crowded, comparing to those of structured proteins. To overcome this problem, high-dimensional NMR experiments can be used, which allow for a better peak separation. In the present review different aspects of such experiments are discussed, from data acquisition and processing to analysis, focusing on experiments for resonance assignment.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/análisis , Proteínas Intrínsecamente Desordenadas/química , Resonancia Magnética Nuclear Biomolecular/métodos , Conformación Proteica
3.
J Biomol NMR ; 64(3): 239-53, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26891900

RESUMEN

Resonance assignment is a prerequisite for almost any NMR-based study of proteins. It can be very challenging in some cases, however, due to the nature of the protein under investigation. This is the case with intrinsically disordered proteins, for example, whose NMR spectra suffer from low chemical shifts dispersion and generally low resolution. For these systems, sequence specific assignment is highly time-consuming, so the prospect of using automatic strategies for their assignment is very attractive. In this article we present a new version of the automatic assignment program TSAR dedicated to intrinsically disordered proteins. In particular, we demonstrate how the automatic procedure can be improved by incorporating methods for amino acid recognition and information on chemical shifts in selected amino acids. The approach was tested in silico on 16 disordered proteins and experimentally on α-synuclein, with remarkably good results.


Asunto(s)
Aminoácidos/química , Proteínas Intrínsecamente Desordenadas/química , Resonancia Magnética Nuclear Biomolecular , Resonancia Magnética Nuclear Biomolecular/métodos
4.
J Biomol NMR ; 62(2): 179-90, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25902761

RESUMEN

Intrinsically disordered proteins (IDPs) have recently attracted much interest, due to their role in many biological processes, including signaling and regulation mechanisms. High-dimensional (13)C direct-detected NMR experiments have proven exceptionally useful in case of IDPs, providing spectra with superior peak dispersion. Here, two such novel experiments recorded with non-uniform sampling are introduced, these are 5D HabCabCO(CA)NCO and 5D HNCO(CA)NCO. Together with the 4D (HACA)CON(CA)NCO, an extension of the previously published 3D experiments (Pantoja-Uceda and Santoro in J Biomol NMR 59:43-50, 2014. doi: 10.1007/s10858-014-9827-1), they form a set allowing for complete and reliable resonance assignment of difficult IDPs. The processing is performed with sparse multidimensional Fourier transform based on the concept of restricting (fixing) some of spectral dimensions to a priori known resonance frequencies. In our study, a multiple-fixing method was developed, that allows easy access to spectral data. The experiments were tested on a resolution-demanding alpha-synuclein sample. Due to superior peak dispersion in high-dimensional spectrum and availability of the sequential connectivities between four consecutive residues, the overwhelming majority of resonances could be assigned automatically using the TSAR program.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Resonancia Magnética Nuclear Biomolecular/métodos , alfa-Sinucleína/química , Isótopos de Carbono/química , Análisis de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...