Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
Nanomaterials (Basel) ; 14(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38998715

RESUMEN

This paper explores the latest advancements in aerogel technology for antimicrobial therapy, revealing their interesting capacity that could improve the current medical approaches for antimicrobial treatments. Aerogels are attractive matrices because they can have an antimicrobial effect on their own, but they can also provide efficient delivery of antimicrobial compounds. Their interesting properties, such as high porosity, ultra-lightweight, and large surface area, make them suitable for such applications. The fundamentals of aerogels and mechanisms of action are discussed. The paper also highlights aerogels' importance in addressing current pressing challenges related to infection management, like the limited drug delivery alternatives and growing resistance to antimicrobial agents. It also covers the potential applications of aerogels in antimicrobial therapy and their possible limitations.

2.
Rom J Morphol Embryol ; 65(2): 173-184, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39020531

RESUMEN

Over the last decades, silica nanoparticles (SiNPs) have been studied for their applications in biomedicine as an alternative used for conventional diagnostics and treatments. Since their properties can be modified and adjusted for the desired use, they have many different potential applications in medicine: they can be used in diagnosis because of their ability to be loaded with dyes and their increased selectivity and sensitivity, which can improve the quality of the diagnostic process. SiNPs can be functionalized by targeting ligands or molecules to detect certain cellular processes or biomarkers with better precision. Targeted delivery is another fundamental use of SiNPs. They could be used as drug delivery systems (DDS) since their structure allows the loading of therapeutic agents or other compounds, and studies have demonstrated their biocompatibility. When SiNPs are used as DDS, the drug's toxicity and the off-target effects are reduced significantly, and they can be used to treat conditions like cancer and neurological diseases and even aid in regenerative processes, such as wound healing or bone repair. However, safety concerns must be considered before SiNPs can be used extensively in clinical practice because NPs can cause toxicity in certain conditions and accumulate at undesired locations. Therefore, an overview of the potential applications that SiNPs could have in medicine, as well as their safety concerns, will be covered in this review paper.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas , Dióxido de Silicio , Humanos , Nanopartículas/química , Nanopartículas/uso terapéutico , Dióxido de Silicio/química , Sistemas de Liberación de Medicamentos/métodos , Animales
3.
Rom J Morphol Embryol ; 65(2): 145-158, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39020529

RESUMEN

This paper explores the integral role of metallic nanomaterials in drug delivery, specifically focusing on their unique characteristics and applications. Exhibiting unique size, shape, and surface features, metallic nanoparticles (MNPs) (e.g., gold, iron oxide, and silver NPs) present possibilities for improving medication efficacy while minimizing side effects. Their demonstrated success in improving drug solubility, bioavailability, and targeted release makes them promising carriers for treating a variety of diseases, including inflammation and cancer, which has one of the highest rates of mortality in the world. Furthermore, it is crucial to acknowledge some limitations of MNPs in drug delivery before successfully incorporating them into standard medical procedures. Thus, challenges such as potential toxicity, issues related to long-term safety, and the need for standardized production methods will also be addressed.


Asunto(s)
Disponibilidad Biológica , Sistemas de Liberación de Medicamentos , Nanopartículas del Metal , Humanos , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Nanoestructuras
4.
Nanomaterials (Basel) ; 14(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38869527

RESUMEN

This study's main objective was to fabricate an innovative three-dimensional microfluidic platform suitable for well-controlled chemical syntheses required for producing fine-tuned nanostructured materials. This work proposes using vortex mixing principles confined within a 3D multilayered microreactor to synthesize magnetic core-shell nanoparticles with tailored dimensions and polydispersity. The newly designed microfluidic platform allowed the simultaneous obtainment of Fe3O4 cores and their functionalization with a salicylic acid shell in a short reaction time and under a high flow rate. Synthesis optimization was also performed, employing the variation in the reagents ratio to highlight the concentration domains in which magnetite is mainly produced, the formation of nanoparticles with different diameters and low polydispersity, and the stability of colloidal dispersions in water. The obtained materials were further characterized by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM), with the experimental results confirming the production of salicylic acid-functionalized iron oxide (Fe3O4-SA) nanoparticles adapted for different further applications.

5.
Gels ; 10(6)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38920940

RESUMEN

Aerogels have emerged as appealing materials for various applications due to their unique features, such as low density, high porosity, high surface area, and low thermal conductivity. Aiming to bring the advantages of these materials to the environmental field, this study focuses on synthesizing magnetic silica aerogel-based films suitable for water decontamination. In this respect, a novel microfluidic platform was created to obtain core-shell iron oxide nanoparticles that were further incorporated into gel-forming precursor solutions. Afterward, dip-coating deposition was utilized to create thin layers of silica-based gels, which were further processed by 15-hour gelation time, solvent transfer, and further CO2 desiccation. A series of physicochemical analyses (XRD, HR-MS FT-ICR, FT-IR, TEM, SEM, and EDS) were performed to characterize the final films and intermediate products. The proposed advanced imaging experimental model for film homogeneity and adsorption characteristics confirmed uniform aerogel film deposition, nanostructured surface, and ability to remove pesticides from contaminated water samples. Based on thorough investigations, it was concluded that the fabricated magnetic aerogel-based thin films are promising candidates for water decontamination and novel solid-phase extraction sample preparation.

6.
Int J Mol Sci ; 25(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38791232

RESUMEN

The treatment of chronic wounds involves precise requirements and complex challenges, as the healing process cannot go beyond the inflammatory phase, therefore increasing the healing time and implying a higher risk of opportunistic infection. Following a better understanding of the healing process, oxygen supply has been validated as a therapeutic approach to improve and speed up wound healing. Moreover, the local implications of antimicrobial agents (such as silver-based nano-compounds) significantly support the normal healing process, by combating bacterial contamination and colonization. In this study, silver (S) and tannylated calcium peroxide (CaO2@TA) nanoparticles were obtained by adapted microfluidic and precipitation synthesis methods, respectively. After complementary physicochemical evaluation, both types of nanoparticles were loaded in (Alg) alginate-based gels that were further evaluated as possible dressings for wound healing. The obtained composites showed a porous structure and uniform distribution of nanoparticles through the polymeric matrix (evidenced by spectrophotometric analysis and electron microscopy studies), together with a good swelling capacity. The as-proposed gel dressings exhibited a constant and suitable concentration of released oxygen, as shown for up to eight hours (UV-Vis investigation). The biofilm modulation data indicated a synergistic antimicrobial effect between silver and tannylated calcium peroxide nanoparticles, with a prominent inhibitory action against the Gram-positive bacterial biofilm after 48 h. Beneficial effects in the human keratinocytes cultured in contact with the obtained materials were demonstrated by the performed tests, such as MTT, LDH, and NO.


Asunto(s)
Alginatos , Peróxidos , Plata , Cicatrización de Heridas , Alginatos/química , Alginatos/farmacología , Cicatrización de Heridas/efectos de los fármacos , Humanos , Plata/química , Plata/farmacología , Peróxidos/química , Peróxidos/farmacología , Geles/química , Nanopartículas/química , Queratinocitos/efectos de los fármacos , Biopelículas/efectos de los fármacos , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , Vendajes , Taninos/química , Taninos/farmacología
7.
Polymers (Basel) ; 16(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38794614

RESUMEN

Cardiovascular diseases (CVDs), the world's most prominent cause of mortality, continue to be challenging conditions for patients, physicians, and researchers alike. CVDs comprise a wide range of illnesses affecting the heart, blood vessels, and the blood that flows through and between them. Advances in nanomedicine, a discipline focused on improving patient outcomes through revolutionary treatments, imaging agents, and ex vivo diagnostics, have created enthusiasm for overcoming limitations in CVDs' therapeutic and diagnostic landscapes. Nanomedicine can be involved in clinical purposes for CVD through the augmentation of cardiac or heart-related biomaterials, which can be functionally, mechanically, immunologically, and electrically improved by incorporating nanomaterials; vasculature applications, which involve systemically injected nanotherapeutics and imaging nanodiagnostics, nano-enabled biomaterials, or tissue-nanoengineered solutions; and enhancement of sensitivity and/or specificity of ex vivo diagnostic devices for patient samples. Therefore, this review discusses the latest studies based on applying organic nanoparticles in cardiovascular illness, including drug-conjugated polymers, lipid nanoparticles, and micelles. Following the revised information, it can be concluded that organic nanoparticles may be the most appropriate type of treatment for cardiovascular diseases due to their biocompatibility and capacity to integrate various drugs.

8.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673885

RESUMEN

Sarcopenia is a prevalent degenerative skeletal muscle condition in the elderly population, posing a tremendous burden on diseased individuals and healthcare systems worldwide. Conventionally, sarcopenia is currently managed through nutritional interventions, physical therapy, and lifestyle modification, with no pharmaceutical agents being approved for specific use in this disease. As the pathogenesis of sarcopenia is still poorly understood and there is no treatment recognized as universally effective, recent research efforts have been directed at better comprehending this illness and diversifying treatment strategies. In this respect, this paper overviews the new advances in sarcopenia treatment in correlation with its underlying mechanisms. Specifically, this review creates an updated framework for sarcopenia, describing its etiology, pathogenesis, risk factors, and conventional treatments, further discussing emerging therapeutic approaches like new drug formulations, drug delivery systems, stem cell therapies, and tissue-engineered scaffolds in more detail.


Asunto(s)
Sarcopenia , Sarcopenia/terapia , Sarcopenia/etiología , Humanos , Animales , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Trasplante de Células Madre/métodos , Ingeniería de Tejidos/métodos , Factores de Riesgo
9.
Eur J Med Chem ; 269: 116268, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38460268

RESUMEN

One of the biggest health challenges of today's world is the emergence of antimicrobial resistance (AMR), which renders conventional therapeutics insufficient and urgently demands the generation of novel antimicrobial strategies. Mycobacterium tuberculosis (M. tuberculosis), the pathogen causing tuberculosis (TB), is among the most successful bacteria producing drug-resistant infections. The versatility of M. tuberculosis allows it to evade traditional anti-TB agents through various acquired and intrinsic mechanisms, rendering TB among the leading causes of infectious disease-related mortality. In this context, researchers worldwide focused on establishing novel approaches to address drug resistance in M. tuberculosis, developing diverse alternative treatments with varying effectiveness and in different testing phases. Overviewing the current progress, this paper aims to briefly present the mechanisms involved in M. tuberculosis drug-resistance, further reviewing in more detail the under-development antibiotics, nanotechnological approaches, and natural therapeutic solutions that promise to overcome current treatment limitations.


Asunto(s)
Antiinfecciosos , Productos Biológicos , Mycobacterium tuberculosis , Tuberculosis , Humanos , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Antiinfecciosos/uso terapéutico
10.
Nanomaterials (Basel) ; 14(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38470798

RESUMEN

Silica aerogels have gained much interest due to their unique properties, such as being the lightest solid material, having small pore sizes, high porosity, and ultralow thermal conductivity. Also, the advancements in synthesis methods have enabled the creation of silica aerogel-based composites in combination with different materials, for example, polymers, metals, and carbon-based structures. These new silica-based materials combine the properties of silica with the other materials to create a new and reinforced architecture with significantly valuable uses in different fields. Therefore, the importance of silica aerogels has been emphasized by presenting their properties, synthesis process, composites, and numerous applications, offering an updated background for further research in this interdisciplinary domain.

11.
Polymers (Basel) ; 16(5)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38475395

RESUMEN

Water contamination by harmful organic and inorganic compounds seriously burdens human health and aquatic life. A series of conventional water purification methods can be employed, yet they come with certain disadvantages, including resulting sludge or solid waste, incomplete treatment process, and high costs. To overcome these limitations, attention has been drawn to nanotechnology for fabricating better-performing adsorbents for contaminant removal. In particular, magnetic nanostructures hold promise for water decontamination applications, benefiting from easy removal from aqueous solutions. In this respect, numerous researchers worldwide have reported incorporating magnetic particles into many composite materials. Therefore, this review aims to present the newest advancements in the field of magnetic composites for water decontamination, describing the appealing properties of a series of base materials and including the results of the most recent studies. In more detail, carbon-, polymer-, hydrogel-, aerogel-, silica-, clay-, biochar-, metal-organic framework-, and covalent organic framework-based magnetic composites are overviewed, which have displayed promising adsorption capacity for industrial pollutants.

12.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38397066

RESUMEN

To modulate the bioactivity and boost the therapeutic outcome of implantable metallic devices, biodegradable coatings based on polylactide (PLA) and graphene oxide nanosheets (nGOs) loaded with Zinforo™ (Zin) have been proposed in this study as innovative alternatives for the local management of biofilm-associated periprosthetic infections. Using a modified Hummers protocol, high-purity and ultra-thin nGOs have been obtained, as evidenced by X-ray diffraction (XRD) and transmission electron microscopy (TEM) investigations. The matrix-assisted pulsed laser evaporation (MAPLE) technique has been successfully employed to obtain the PLA-nGO-Zin coatings. The stoichiometric and uniform transfer was revealed by infrared microscopy (IRM) and scanning electron microscopy (SEM) studies. In vitro evaluation, performed on fresh blood samples, has shown the excellent hemocompatibility of PLA-nGO-Zin-coated samples (with a hemolytic index of 1.15%), together with their anti-inflammatory ability. Moreover, the PLA-nGO-Zin coatings significantly inhibited the development of mature bacterial biofilms, inducing important anti-biofilm efficiency in the as-coated samples. The herein-reported results evidence the promising potential of PLA-nGO-Zin coatings to be used for the biocompatible and antimicrobial surface modification of metallic implants.


Asunto(s)
Antiinfecciosos , Grafito , Nanoestructuras , Grafito/farmacología , Poliésteres , Materiales Biocompatibles Revestidos/farmacología
13.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38256075

RESUMEN

Globally, cardiovascular diseases (CVDs) are the leading cause of death and disability. While there are many therapeutic alternatives available for the management of CVDs, the majority of classic therapeutic strategies were found to be ineffective at stopping or significantly/additionally slowing the progression of these diseases, or they had unfavorable side effects. Numerous metal-based nanoparticles (NPs) have been created to overcome these limitations, demonstrating encouraging possibilities in the treatment of CVDs due to advancements in nanotechnology. Metallic nanomaterials, including gold, silver, and iron, come in various shapes, sizes, and geometries. Metallic NPs are generally smaller and have more specialized physical, chemical, and biological properties. Metal-based NPs may come in various forms, such as nanoshells, nanorods, and nanospheres, and they have been studied the most. Massive potential applications for these metal nanomaterial structures include supporting molecular imaging, serving as drug delivery systems, enhancing radiation-based anticancer therapy, supplying photothermal transforming effects for thermal therapy, and being compounds with bactericidal, fungicidal, and antiviral qualities that may be helpful for cardiovascular diseases. In this context, the present paper aims to review the applications of relevant metal and metal oxide nanoparticles in CVDs, creating an up-to-date framework that aids researchers in developing more efficient treatment strategies.


Asunto(s)
Enfermedades Cardiovasculares , Nanopartículas del Metal , Nanocáscaras , Humanos , Enfermedades Cardiovasculares/tratamiento farmacológico , Nanopartículas del Metal/uso terapéutico , Antibacterianos , Exactitud de los Datos
14.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38256151

RESUMEN

Cardiovascular diseases (CVDs) increasingly burden health systems and patients worldwide, necessitating the improved awareness of current treatment possibilities and the development of more efficient therapeutic strategies. When plaque deposits narrow the arteries, the standard of care implies the insertion of a stent at the lesion site. The most promising development in cardiovascular stents has been the release of medications from these stents. However, the use of drug-eluting stents (DESs) is still challenged by in-stent restenosis occurrence. DESs' long-term clinical success depends on several parameters, including the degradability of the polymers, drug release profiles, stent platforms, coating polymers, and the metals and their alloys that are employed as metal frames in the stents. Thus, it is critical to investigate new approaches to optimize the most suitable DESs to solve problems with the inflammatory response, delayed endothelialization, and sub-acute stent thrombosis. As certain advancements have been reported in the literature, this review aims to present the latest updates in the coatings field for cardiovascular stents. Specifically, there are described various organic (e.g., synthetic and natural polymer-based coatings, stents coated directly with drugs, and coatings containing endothelial cells) and inorganic (e.g., metallic and nonmetallic materials) stent coating options, aiming to create an updated framework that would serve as an inception point for future research.


Asunto(s)
Enfermedades Cardiovasculares , Células Endoteliales , Humanos , Enfermedades Cardiovasculares/terapia , Arterias , Aleaciones , Polímeros
15.
Materials (Basel) ; 16(22)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38005054

RESUMEN

Abdominal hernias are common issues in the clinical setting, burdening millions of patients worldwide. Associated with pain, decreased quality of life, and severe potential complications, abdominal wall hernias should be treated as soon as possible. Whether an open repair or laparoscopic surgical approach is tackled, mesh reinforcement is generally required to ensure a durable hernia repair. Over the years, numerous mesh products have been made available on the market and in clinical settings, yet each of the currently used meshes presents certain limitations that reflect on treatment outcomes. Thus, mesh development is still ongoing, and emerging solutions have reached various testing stages. In this regard, this paper aims to establish an up-to-date framework on abdominal meshes, briefly overviewing currently available solutions for hernia repair and discussing in detail the most recent advances in the field. Particularly, there are presented the developments in lightweight materials, meshes with improved attachment, antimicrobial fabrics, composite and hybrid textiles, and performant mesh designs, followed by a systematic review of recently completed clinical trials.

16.
Nanomaterials (Basel) ; 13(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37887945

RESUMEN

Magnetite nanoparticles (Fe3O4 NPs) are among the most investigated nanomaterials, being recognized for their biocompatibility, versatility, and strong magnetic properties. Given that their applicability depends on their dimensions, crystal morphology, and surface chemistry, Fe3O4 NPs must be synthesized in a controlled, simple, and reproducible manner. Since conventional methods often lack tight control over reaction parameters and produce materials with unreliable characteristics, increased scientific interest has been directed to microfluidic techniques. In this context, the present paper describes the development of an innovative 3D microfluidic platform suitable for synthesizing uniform Fe3O4 NPs with fine-tuned properties. On-chip co-precipitation was performed, followed by microwave-assisted silanization. The obtained nanoparticles were characterized from the compositional and microstructural perspectives by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Moreover, supplementary physicochemical investigations, such as Fourier Transform Infrared Spectroscopy (FT-IR), Kaiser Test, Ultraviolet-Visible (UV-Vis) Spectrophotometry, Dynamic Light Scattering (DLS), and Thermogravimetry and Differential Scanning Calorimetry (TG-DSC) analyses, demonstrated the successful surface modification. Considering the positive results, the presented synthesis and functionalization method represents a fast, reliable, and effective alternative for producing tailored magnetic nanoparticles.

17.
Int J Mol Sci ; 24(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37895077

RESUMEN

In recent years, interest in nanotechnology has increased exponentially due to enhanced progress and technological innovation. In tissue engineering, the development of metallic nanoparticles has been amplified, especially due to their antibacterial properties. Another important characteristic of metal NPs is that they enable high control over the features of the developed scaffolds (optimizing their mechanical strength and offering the controlled release of bioactive agents). Currently, the main concern related to the method of synthesis of metal oxide NPs is the environmental impact. The physical and chemical synthesis uses toxic agents that could generate hazards or exert carcinogenicity/environmental toxicity. Therefore, a greener, cleaner, and more reliable approach is needed. Green synthetic has come as a solution to counter the aforementioned limitations. Nowadays, green synthesis is preferred because it leads to the prevention/minimization of waste, the reduction of derivatives/pollution, and the use of non-toxic (safer) solvents. This method not only uses biomass sources as reducing agents for metal salts. The biomolecules also cover the synthesized NPs or act as in situ capping and reducing agents. Further, their involvement in the formation process reduces toxicity, prevents nanoparticle agglomeration, and improves the antimicrobial activity of the nanomaterial, leading to a possible synergistic effect. This study aims to provide a comprehensive review of the green synthesis of metal and metal oxide nanoparticles, from the synthesis routes, selected solvents, and parameters to their latest application in the biomedical field.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Óxidos/química , Sustancias Reductoras , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , Metales , Extractos Vegetales/química , Solventes , Tecnología Química Verde/métodos
18.
Int J Mol Sci ; 24(18)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37762601

RESUMEN

Over 20 million hernias are operated on globally per year, with most interventions requiring mesh reinforcement. A wide range of such medical devices are currently available on the market, most fabricated from synthetic polymers. Yet, searching for an ideal mesh is an ongoing process, with continuous efforts directed toward developing upgraded implants by modifying existing products or creating innovative systems from scratch. In this regard, this review presents the most frequently employed polymers for mesh fabrication, outlining the market available products and their relevant characteristics, further focusing on the state-of-the-art mesh approaches. Specifically, we mainly discuss recent studies concerning coating application, nanomaterials addition, stem cell seeding, and 3D printing of custom mesh designs.


Asunto(s)
Abdomen , Nanoestructuras , Polímeros , Impresión Tridimensional , Refuerzo en Psicología
19.
Materials (Basel) ; 16(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37629873

RESUMEN

Spinal disorders cover a broad spectrum of pathologies and are among the most prevalent medical conditions. The management of these health issues was noted to be increasingly based on surgical interventions. Spinal fixation devices are often employed to improve surgery outcomes, increasing spinal stability, restoring structural integrity, and ensuring functionality. However, most of the currently used fixation tools are fabricated from materials with very different mechanical properties to native bone that are prone to pull-out effects or fail over time, requiring revision procedures. Solutions to these problems presently exploited in practice include the optimal selection of screw shape and size, modification of insertion trajectory, and utilization of bone cement to reinforce fixation constructs. Nevertheless, none of these methods are without risks and limitations. An alternative option to increasing biomechanical resistance to the pull-out effect is to tackle bone regenerative capacity and focus on screw osteointegration properties. Osteointegration was reportedly enhanced through various optimization strategies, including use of novel materials, surface modification techniques (e.g., application of coatings and topological optimization), and utilization of composites that allow synergistic effects between constituents. In this context, this paper takes a comprehensive path, starting with a brief presentation of spinal fixation devices, moving further to observations on how the pull-out strength can be enhanced with existing methods, and further focusing on techniques for implant osteointegration improvement.

20.
Polymers (Basel) ; 15(15)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37571176

RESUMEN

The highest amount of the world's polyethylene terephthalate (PET) is designated for fiber production (more than 60%) and food packaging (30%) and it is one of the major polluting polymers. Although there is a great interest in recycling PET-based materials, a large amount of unrecycled material is derived mostly from the food and textile industries. The aim of this study was to obtain and characterize nanostructured membranes with fibrillar consistency based on recycled PET and nanoparticles (Fe3O4@UA) using the electrospinning technique. The obtained fibers limit microbial colonization and the development of biofilms. Such fibers could significantly impact modern food packaging and the design of improved textile fibers with antimicrobial effects and good biocompatibility. In conclusion, this study suggests an alternative for PET recycling and further applies it in the development of antimicrobial biomaterials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...