Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38794549

RESUMEN

This study investigates the unique morphology and mechanical properties of multi-jet electrospun cashew gum (CG) when combined with high-molecular-weight polyethylene oxide (PEO) and glycerol. Cashew gum (CG) is a low-cost, non-toxic heteropolysaccharide derived from Anacardium occidentale trees. Initially, the electrospinnability of aqueous solutions of cashew gum alone or in combination with PEO was evaluated. It was found that cashew gum alone was not suitable for electrospinning; thus, adding a small quantity of PEO was needed to create the necessary molecular entanglements for fiber formation. By using a single emitter with a CG:PEO ratio of 85:15, straight and smooth fibers with some defects were obtained. However, additional purification of the cashew gum solution was needed to produce more stable and defect-free straight and smooth fibers. Additionally, the inclusion of glycerol as a plasticizer was required to overcome material fragility. Interestingly, when the optimized formulation was electrospun using multiple simultaneous emitters, thicker aligned fiber bundles were achieved. Furthermore, the resulting oriented fiber mats exhibited unexpectedly high elongation at break under ambient conditions. These findings underscore the potential of this bio-polysaccharide-based formulation for non-direct water contact applications that demand elastic properties.

2.
Int J Biol Macromol ; 263(Pt 1): 130210, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38365144

RESUMEN

Sustainable active food packaging is essential to reduce the use of plastics, preserve food quality and minimize the environmental impact. Humic substances (HS) are rich in redox-active compounds, such as quinones, phenols, carboxyl, and hydroxyl moieties, making them functional additives for biopolymeric matrices, such as poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Herein, composites made by incorporating different amounts of HS into PHBV were developed using the electrospinning technology and converted into homogeneous and continuous films by a thermal post-treatment to obtain a bioactive and biodegradable layer which could be part of a multilayer food packaging solution. The morphology, thermal, optical, mechanical, antioxidant and barrier properties of the resulting PHBV-based films have been evaluated, as well as the antifungal activity against Aspergillus flavus and Candida albicans and the antimicrobial properties against both Gram (+) and Gram (-) bacterial strains. HS show great potential as natural additives for biopolymer matrices, since they confer antioxidant, antimicrobial, and antifungal properties to the resulting materials. In addition, barrier, optical and mechanical properties highlighted that the obtained films are suitable for sustainable active packaging. Therefore, the electrospinning methodology is a promising and sustainable approach to give biowaste a new life through the development of multifunctional materials suitable in the active bio-packaging.


Asunto(s)
Embalaje de Alimentos , Sustancias Húmicas , Ácidos Pentanoicos , Antifúngicos/farmacología , Antioxidantes/farmacología , Poliésteres
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...