Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Dent Res ; 83(8): 608-12, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15271968

RESUMEN

Candidate genes for amelogenesis imperfecta (AI) and dentinogenesis imperfecta (DI) are located on 4q21 in humans. We tested our hypothesis that mutations in the portion of mouse chromosome 5 corresponding to human chromosome 4q21 would cause enamel and dentin abnormalities. Male C3H mice were injected with ethylnitrosourea (ENU). Within a dominant ENU mutagenesis screen, a mouse mutant was isolated with an abnormal tooth enamel (ATE) phenotype. The structure and ultrastructure of teeth were studied. The mutation was located on mouse chromosome 5 in an interval of 9 cM between markers D5Mit18 and D5Mit10. Homozygotic mutants showed total enamel aplasia with exposed dentinal tubules, while heterozygotic mutants showed a significant reduction in enamel width. Dentin of mutant mice showed a reduced content of mature collagen cross-links. We were able to demonstrate that a mutation on chromosome 5 corresponding to human chromosome 4q21 can cause amelogenesis imperfecta and changes in dentin composition.


Asunto(s)
Amelogénesis Imperfecta/genética , Cromosomas Humanos Par 5/genética , Dentina/patología , Modelos Animales de Enfermedad , Ratones Mutantes/genética , Animales , Mapeo Cromosómico , Cromosomas Humanos Par 4/genética , Análisis Mutacional de ADN , Esmalte Dental/patología , Proteínas del Esmalte Dental/genética , Etilnitrosourea , Femenino , Pruebas Genéticas , Humanos , Masculino , Ratones , Ratones Endogámicos C3H , Mutagénesis , Mutágenos
2.
Biofactors ; 14(1-4): 17-24, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11568436

RESUMEN

The mechanism of selenocysteine incorporation in eukaryotes has been assumed for almost a decade to be inherently different from that in prokaryotes, due to differences in the architecture of selenoprotein mRNAs in the two kingdoms. After extensive efforts in a number of laboratories spanning the same time frame, some of the essential differences between these mechanisms are finally being revealed, through identification of the factors catalyzing cotranslational selenocysteine insertion in eukaryotes. A single factor in prokaryotes recognizes both the selenoprotein mRNA, via sequences in the coding region, and the unique selenocysteyl-tRNA, via both its secondary structure and amino acid. The corresponding functions in eukaryotes are conferred by two distinct but interacting factors, one recognizing the mRNA, via structures in the 3' untranslated region, and the second recognizing the tRNA. Now, with these factors in hand, crucial questions about the mechanistic details and efficiency of this intriguing process can begin to be addressed.


Asunto(s)
Regiones no Traducidas 3'/genética , Factores de Elongación de Péptidos/metabolismo , Proteínas/genética , ARN de Transferencia Aminoácido-Específico/metabolismo , Selenocisteína/metabolismo , Regiones no Traducidas 3'/metabolismo , Animales , Células Eucariotas/metabolismo , Methanococcus/genética , Methanococcus/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Selenoproteínas
3.
J Mol Biol ; 310(4): 699-707, 2001 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-11453681

RESUMEN

Termination of translation in eukaryotes is catalyzed by eRF1, the stop codon recognition factor, and eRF3, an eRF1 and ribosome-dependent GTPase. In selenoprotein mRNAs, UGA codons, which typically specify termination, serve an alternate function as sense codons. Selenocysteine incorporation involves a unique tRNA with an anticodon complementary to UGA, a unique elongation factor specific for this tRNA, and cis-acting secondary structures in selenoprotein mRNAs, termed SECIS elements. To gain insight into the interplay between the selenocysteine insertion and termination machinery, we investigated the effects of overexpressing eRF1 and eRF3, and of altering UGA codon context, on the efficiency of selenoprotein synthesis in a transient transfection system. Overexpression of eRF1 does not increase termination at naturally occurring selenocysteine codons. Surprisingly, selenocysteine incorporation is enhanced. Overexpression of eRF3 did not affect incorporation efficiency. Coexpression of both factors reproduced the effects with eRF1 alone. Finally, we show that the nucleotide context immediately upstream and downstream of the UGA codon significantly affects termination to incorporation ratios and the response to eRF overexpression. Implications for the mechanisms of selenocysteine incorporation and termination are discussed.


Asunto(s)
Terminación de la Cadena Péptídica Traduccional/genética , Factores de Terminación de Péptidos/metabolismo , Biosíntesis de Proteínas/genética , Selenocisteína/metabolismo , Secuencia de Bases , Western Blotting , Línea Celular , Codón/genética , Genes Reporteros/genética , Humanos , Yoduro Peroxidasa/metabolismo , Mutación/genética , Factores de Terminación de Péptidos/genética , Proteínas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Selenio/metabolismo , Selenocisteína/genética , Selenoproteínas , Transfección
4.
EMBO J ; 19(24): 6882-90, 2000 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-11118223

RESUMEN

Selenocysteine incorporation at UGA codons requires cis-acting mRNA secondary structures and several specialized trans-acting factors. The latter include a selenocysteine-specific tRNA, an elongation factor specific for this tRNA and a SECIS-binding protein, SBP2, which recruits the elongation factor to the selenoprotein mRNA. Overexpression of selenoprotein mRNAs in transfected cells results in inefficient selenocysteine incorporation due to limitation of one or more of these factors. Using a transfection-based competition assay employing overexpression of selenoprotein mRNAs to compete for selenoprotein synthesis, we investigated the ability of the trans-acting factors to overcome competition and restore selenocysteine incorporation. We report that co-expression of SBP2 overcomes the limitation produced by selenoprotein mRNA overexpression, whereas selenocysteyl-tRNA and the selenocysteine-specific elongation factor do not. Competition studies indicate that once bound to SECIS elements, SBP2 does not readily exchange between them. Finally, we show that SBP2 preferentially stimulates incorporation directed by the seleno protein P and phospholipid hydroperoxide glutathione peroxidase SECIS elements over those of other selenoproteins. The mechanistic implications of these findings for the hierarchy of selenoprotein synthesis and nonsense-mediated decay are discussed.


Asunto(s)
Proteínas , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Selenocisteína/genética , Línea Celular , Genes Reporteros , Humanos , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Mutagénesis Sitio-Dirigida , Sistemas de Lectura Abierta , Biosíntesis de Proteínas , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Selenocisteína/metabolismo , Selenoproteínas , Transcripción Genética , Transfección , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
5.
RNA ; 5(5): 625-35, 1999 May.
Artículo en Inglés | MEDLINE | ID: mdl-10334333

RESUMEN

Translation of UGA as selenocysteine requires specific RNA secondary structures in the mRNAs of selenoproteins. These elements differ in sequence, structure, and location in the mRNA, that is, coding versus 3' untranslated region, in prokaryotes, eukaryotes, and archaea. Analyses of eukaryotic selenocysteine insertion sequence (SECIS) elements via computer folding programs, mutagenesis studies, and chemical and enzymatic probing has led to the derivation of a predicted consensus structural model for these elements. This model consists of a stem-loop or hairpin, with conserved nucleotides in the loop and in a non-Watson-Crick motif at the base of the stem. However, the sequences of a number of SECIS elements predict that they would diverge from the consensus structure in the loop region. Using site-directed mutagenesis to introduce mutations predicted to either disrupt or restore structure, or to manipulate loop size or stem length, we show that eukaryotic SECIS elements fall into two distinct classes, termed forms 1 and 2. Form 2 elements have additional secondary structures not present in form 1 elements. By either insertion or deletion of the sequences and structures distinguishing the two classes of elements while maintaining appropriate loop size, conversion of a form 1 element to a functional form 2-like element and of a form 2 to a functional form 1-like element was achieved. These results suggest commonality of function of the two classes. The information obtained regarding the existence of two classes of SECIS elements and the tolerances for manipulations of stem length and loop size should facilitate designing RNA molecules for obtaining high-resolution structural information about these elements.


Asunto(s)
Codón/genética , Células Eucariotas/metabolismo , Conformación de Ácido Nucleico , Proteínas/genética , ARN Mensajero/genética , Selenocisteína/metabolismo , Animales , Archaea/genética , Secuencia de Bases , Bovinos , Línea Celular , Secuencia de Consenso , ADN/genética , Perros , Regulación de la Expresión Génica , Humanos , Riñón , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oligonucleótidos/metabolismo , Células Procariotas/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/química , Proteínas de Unión al ARN/metabolismo , Conejos , Ratas , Secuencias Reguladoras de Ácidos Nucleicos , Selenoproteínas , Transfección
6.
J Cancer Res Clin Oncol ; 119(11): 685-8, 1993.
Artículo en Inglés | MEDLINE | ID: mdl-8394368

RESUMEN

A novel protein of 21 kDa (p21) has been detected in the sera of patients with different solid tumors. The serum levels of this p21 protein were measured in seven patients with metastatic testicular germ-cell tumors before and after chemotherapy using an enzyme-linked immunosorbent assay. In five out of six patients who responded to chemotherapy a concomitant decrease of p21 serum levels was found. The decrease of p21 was in accordance with the decline of the established tumor markers alpha-fetoprotein, human chorionic gonadotropin beta-subunit and lactate dehydrogenase in three patients with non-seminomatous tumors and with the decline of lactate dehydrogenase and the clinical response in two patients with seminoma. In one patient the predicted decline of p21 did not occur despite the patient's clinical response to chemotherapy. In the seventh patient, who relapsed directly after chemotherapy, no decline of either p21 levels or tumor markers was observed. The absolute amount of the p21 protein prior to chemotherapy did not correlate with the patients' tumor burden. Elevated levels of p21 were found in patients with seminomatous and non-seminomatous germ-cell tumors. Since seminoma patients do not secrete tumor markers like alpha-fetoprotein or human chorionic gonadotropin beta, the determination of p21 levels may help to evaluate the efficacy of chemotherapy in patients with seminomatous as well as in patients with marker-negative non-seminomatous germ-cell tumors. The biological role of p21 and its clinical significance will be further investigated.


Asunto(s)
Biomarcadores de Tumor/sangre , Proteínas de Neoplasias/sangre , Neoplasias de Células Germinales y Embrionarias/química , Neoplasias Testiculares/química , Adulto , Disgerminoma/química , Disgerminoma/secundario , Electroforesis en Gel de Poliacrilamida , Ensayo de Inmunoadsorción Enzimática , Humanos , Masculino , Mesonefroma/química , Mesonefroma/secundario , Persona de Mediana Edad , Estadificación de Neoplasias , Neoplasias de Células Germinales y Embrionarias/secundario , Teratoma/química , Teratoma/secundario , Neoplasias Testiculares/secundario
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA