Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 939: 173333, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38763199

RESUMEN

This paper reports on development of an optical biosensor for the detection of antibodies against SARS-CoV-2 virus proteins in blood serum. ZnO nanotetrapods with high surface area and stable room temperature photoluminescence (PL) were selected as transducers. Structure and optical properties of the ZnO tetrapods have been studied by XRD, SEM and Raman spectroscopy. Crystallinity, dimensions and emission peaks of the ZnO tetrapods were determined. The ZnO tetrapods were fixed on glass chip. Silanization of ZnO tetrapods surface resulted in forming of functional surface groups suitable for the immobilization of bioselective layer. Two types of recombinant proteins (rS and rN) have been used to form bioselective layer on the surface of the ZnO tetrapods. Flow through microfluidic system, integrated with optical system, has been used for the determination of antibodies against SARS-CoV-2 virus proteins present in blood samples. The SARS-CoV-2 probes, prepared in PBS solution, have been injected into the measurement chamber with a constant pumping speed. Steady-state photoluminescence spectra and photoluminescence kinetics have been studied before and after injection of the probes. The biosensor signal has been tested to anti-SARS-CoV-2 antibodies in the range of 0.001 nM-1 nM. Control measurements have been performed with blood serum of healthy person. ZnO-SARS-CoV-2-rS and ZnO-SARS-CoV-2-rN biosensors showed high stability and sensitivity to anti-SARS-CoV-2 antibodies in the range of 0.025-0.5 nM (LOD 0.01 nM) and 0.3-1 nM (LOD 0.3 nM), respectively. Gibbs free energy of interaction between ZnO/SARS-CoV-2-rS and ZnO/SARS-CoV-2-rN bioselective layers with anti-SARS-CoV-2 antibodies showed -35.5 and -21.4 kJ/mol, respectively. Average detection time of biosensor integrated within microfluidic system was 15-20 min. The detection time and pumping speed (50 µL/min) were optimized to make detection faster. The developed system and ZnO-SARS-CoV-2-rS nanostructures have good potential for detection of anti-SARS-CoV-2 antibodies from patient's probes.

2.
Nanomaterials (Basel) ; 13(18)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37764630

RESUMEN

Cardiovascular diseases (CVDs) remain a leading cause of death in the European population, primarily attributed to atherosclerosis and subsequent complications. Although statin drugs effectively prevent atherosclerosis, they fail to reduce plaque size and vascular stenosis. Bare metal stents (BMS) have shown promise in acute coronary disease treatment but are associated with restenosis in the stent. Drug-eluting stents (DES) have improved restenosis rates but present long-term complications. To overcome these limitations, nanomaterial-based modifications of the stent surfaces have been explored. This study focuses on the incorporation of detonation nanodiamonds (NDs) into a plasma electrolytic oxidation (PEO) coating on nitinol stents to enhance their performance. The functionalized ND showed a high surface-to-volume ratio and was incorporated into the oxide layer to mimic high-density lipoproteins (HDL) for reverse cholesterol transport (RCT). We provide substantial characterization of DND, including stability in two media (acetone and water), Fourier transmission infrared spectroscopy, and nanoparticle tracking analysis. The characterization of the modified ND revealed successful functionalization and adequate suspension stability. Scanning electron microscopy with EDX demonstrated successful incorporation of DND into the ceramic layer, but the formation of a porous surface is possible only in the high-voltage PEO. The biological assessment demonstrated the biocompatibility of the decorated nitinol surface with enhanced cell adhesion and proliferation. This study presents a novel approach to improving the performance of nitinol stents using ND-based surface modifications, providing a promising avenue for cardiovascular disease.

3.
Sensors (Basel) ; 21(21)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34770491

RESUMEN

Among the different types of photonic sensor devices, optical whispering gallery mode resonators (WGMRs) have attracted interest due to their high level of sensitivity, small size, and ability to perform real-time temperature measurements. Here we demonstrate the applicability of temperature measurements using WGMR in both air and liquid environments. We also show that WGMR allowed measurements of the refractive index variations in an evaporating glucose-water solution droplet. The thermal tuning of WGMR can be reduced by coating WGMRs with a thin layer of polymethyl methacrylate (PMMA). Dip-coating the silica microsphere multiple times significantly reduced the resonance shift, partially compensating for the positive thermo-optical coefficient of silica. The shift direction changed the sign eventually.


Asunto(s)
Glucosa , Refractometría , Microesferas , Óptica y Fotónica , Temperatura
4.
Polymers (Basel) ; 13(17)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34502958

RESUMEN

Zinc oxide (ZnO) nanostructures are widely used in optical sensors and biosensors. Functionalization of these nanostructures with polymers enables optical properties of ZnO to be tailored. Polydopamine (PDA) is a highly biocompatible polymer, which can be used as a versatile coating suitable for application in sensor and biosensor design. In this research, we have grown ZnO-based nanorods on the surface of ITO-modified glass-plated optically transparent electrodes (glass/ITO). Then the deposition of the PDA polymer layer on the surface of ZnO nanorods was performed from an aqueous PDA solution in such a way glass/ITO/ZnO-PDA structure was formed. The ZnO-PDA composite was characterized by SEM, TEM, and FTIR spectroscopy. Then glucose oxidase (GOx) was immobilized using crosslinking by glutaraldehyde on the surface of the ZnO-PDA composite, and glass/ITO/ZnO-PDA/GOx-based biosensing structure was designed. This structure was applied for the photo-electrochemical determination of glucose (Glc) in aqueous solutions. Photo-electrochemical determination of glucose by cyclic voltammetry and amperometry has been performed by glass/ITO/ZnO-PDA/GOx-based biosensor. Here reported modification/functionalization of ZnO nanorods with PDA enhances the photo-electrochemical performance of ZnO nanorods, which is well suited for the design of photo-electrochemical sensors and biosensors.

5.
Molecules ; 26(7)2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33917454

RESUMEN

The biodegradable metals, including magnesium (Mg), are a convenient alternative to permanent metals but fast uncontrolled corrosion limited wide clinical application. Formation of a barrier coating on Mg alloys could be a successful strategy for the production of a stable external layer that prevents fast corrosion. Our research was aimed to develop an Mg stable oxide coating using plasma electrolytic oxidation (PEO) in silicate-based solutions. 99.9% pure Mg alloy was anodized in electrolytes contained mixtures of sodium silicate and sodium fluoride, calcium hydroxide and sodium hydroxide. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), contact angle (CA), Photoluminescence analysis and immersion tests were performed to assess structural and long-term corrosion properties of the new coating. Biocompatibility and antibacterial potential of the new coating were evaluated using U2OS cell culture and the gram-positive Staphylococcus aureus (S. aureus, strain B 918). PEO provided the formation of a porous oxide layer with relatively high roughness. It was shown that Ca(OH)2 was a crucial compound for oxidation and surface modification of Mg implants, treated with the PEO method. The addition of Ca2+ ions resulted in more intense oxidation of the Mg surface and growth of the oxide layer with a higher active surface area. Cell culture experiments demonstrated appropriate cell adhesion to all investigated coatings with a significantly better proliferation rate for the samples treated in Ca(OH)2-containing electrolyte. In contrast, NaOH-based electrolyte provided more relevant antibacterial effects but did not support cell proliferation. In conclusion, it should be noted that PEO of Mg alloy in silicate baths containing Ca(OH)2 provided the formation of stable biocompatible oxide coatings that could be used in the development of commercial degradable implants.


Asunto(s)
Electrólisis , Magnesio/farmacología , Gases em Plasma/química , Silicatos/química , Antibacterianos/farmacología , Líquidos Corporales/química , Calcio/análisis , Línea Celular Tumoral , Supervivencia Celular , Materiales Biocompatibles Revestidos/farmacología , Electrodos , Humanos , Luminiscencia , Pruebas de Sensibilidad Microbiana , Oxidación-Reducción , Fósforo/análisis , Soluciones , Espectrometría por Rayos X , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo
6.
Nanomaterials (Basel) ; 10(12)2020 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-33291264

RESUMEN

Polydopamine (PDA) is a new biocompatible material, which has prospects in biomedical and sensor applications. Due to functional groups, it can host wide range of biomolecules. ZnO nanostructures are well known templates for optical sensors and biosensors. The combination of ZnO and PDA results in a change of optical properties of ZnO-PDA composites as a shift of photoluminescence (PL) peaks and PL quenching. However, to date, the effect of the PDA layer on fundamental properties of ZnO-PDA nanostructures has not been studied. The presented paper reports on optical and surface properties of novel ZnO-PDA nanocomposites. PDA layers were chemically synthesized on ZnO nanostructures from different solution concentrations of 0.3, 0.4, 0.5 and 0.7 mg/mL. Structure, electronic and optical properties were studied by SEM, Raman, FTIR, diffuse reflectance and photoluminescence methods. The Z-potential of the samples was evaluated in neutral pH (pH = 7.2). The response of the samples towards poly-l-lysine adsorption, as a model molecule, was studied by PL spectroscopy to evaluate the correlation between optical and surface properties. The role of the PDA concentration on fundamental properties was discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...