Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Biol ; 222(5)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36897279

RESUMEN

Amplification of the mitotic kinase Aurora A or loss of its regulator protein phosphatase 6 (PP6) have emerged as drivers of genome instability. Cells lacking PPP6C, the catalytic subunit of PP6, have amplified Aurora A activity, and as we show here, enlarged mitotic spindles which fail to hold chromosomes tightly together in anaphase, causing defective nuclear structure. Using functional genomics to shed light on the processes underpinning these changes, we discover synthetic lethality between PPP6C and the kinetochore protein NDC80. We find that NDC80 is phosphorylated on multiple N-terminal sites during spindle formation by Aurora A-TPX2, exclusively at checkpoint-silenced, microtubule-attached kinetochores. NDC80 phosphorylation persists until spindle disassembly in telophase, is increased in PPP6C knockout cells, and is Aurora B-independent. An Aurora-phosphorylation-deficient NDC80-9A mutant reduces spindle size and suppresses defective nuclear structure in PPP6C knockout cells. In regulating NDC80 phosphorylation by Aurora A-TPX2, PP6 plays an important role in mitotic spindle formation and size control and thus the fidelity of cell division.


Asunto(s)
Aurora Quinasa A , Proteínas del Citoesqueleto , Proteínas Asociadas a Microtúbulos , Proteínas Nucleares , Fosfoproteínas Fosfatasas , Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mitosis , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Huso Acromático/metabolismo , Proteínas del Citoesqueleto/metabolismo , Aurora Quinasa A/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo
2.
Curr Biol ; 32(23): 5200-5208.e8, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36395767

RESUMEN

In eukaryotes, the spindle assembly checkpoint protects genome stability in mitosis by preventing chromosome segregation until incorrect microtubule-kinetochore attachment geometries have been eliminated and chromosome biorientation has been completed. These error correction and checkpoint processes are linked by the conserved Aurora B and MPS1 Ser/Thr kinases.1,2 MPS1-dependent checkpoint signaling is believed to be initiated by kinetochores without end-on microtubule attachments,3,4 including those generated by Aurora B-mediated error correction. The current model posits that MPS1 competes with microtubules for binding sites at the kinetochore.3,4 MPS1 is thought to first recognize kinetochores not blocked by microtubules and then initiate checkpoint signaling. However, MPS1 is also required for chromosome biorientation and correction of microtubule-kinetochore attachment errors.5,6,7,8,9 This latter function, which must require direct interaction with microtubule-attached kinetochores, is not readily explained within the constraints of the current model. Here, we show that MPS1 transiently localizes to end-on attached kinetochores and that this recruitment depends on the relative activities of Aurora B and its counteracting phosphatase PP2A-B56 rather than microtubule-attachment state per se. MPS1 autophosphorylation also regulates MPS1 kinetochore levels but does not determine the response to microtubule attachment. At end-on attached kinetochores, MPS1 actively promotes microtubule release together with Aurora B. Furthermore, in live cells, MPS1 is detected at attached kinetochores before the removal of microtubules. During chromosome alignment, MPS1, therefore, coordinates both the resolution of incorrect microtubule-kinetochore attachments and the initiation of spindle checkpoint signaling.


Asunto(s)
Microtúbulos
3.
Elife ; 112022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36318477

RESUMEN

Nuclear architecture and functions depend on dynamic interactions between nuclear components (such as chromatin) and inner nuclear membrane (INM) proteins. Mutations in INM proteins interfering with these interactions result in disease. However, mechanisms controlling the levels and turnover of INM proteins remain unknown. Here, we describe a mechanism of regulated degradation of the INM SUN domain-containing protein 2 (SUN2). We show that Casein Kinase 2 and the C-terminal domain Nuclear Envelope Phosphatase 1 (CTDNEP1) have opposing effects on SUN2 levels by regulating SUN2 binding to the ubiquitin ligase Skp/Cullin1/F-BoxßTrCP (SCFßTrCP). Upon binding to phosphorylated SUN2, SCFßTrCP promotes its ubiquitination. Ubiquitinated SUN2 is membrane extracted by the AAA ATPase p97 and delivered to the proteasome for degradation. Importantly, accumulation of non-degradable SUN2 results in aberrant nuclear architecture, vulnerability to DNA damage and increased lagging chromosomes in mitosis. These findings uncover a central role of proteolysis in INM protein homeostasis.


Asunto(s)
Membrana Nuclear , Proteínas con Repetición de beta-Transducina , Membrana Nuclear/metabolismo , Proteínas con Repetición de beta-Transducina/metabolismo , Proteínas de la Membrana/metabolismo , Núcleo Celular/metabolismo , Proteolisis , Ubiquitina/metabolismo
4.
J Cell Sci ; 134(1)2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33288550

RESUMEN

Errors in mitotic chromosome segregation can lead to DNA damage and aneuploidy, both hallmarks of cancer. To achieve synchronous error-free segregation, mitotic chromosomes must align at the metaphase plate with stable amphitelic attachments to microtubules emanating from opposing spindle poles. The astrin-kinastrin (astrin is also known as SPAG5 and kinastrin as SKAP) complex, also containing DYNLL1 and MYCBP, is a spindle and kinetochore protein complex with important roles in bipolar spindle formation, chromosome alignment and microtubule-kinetochore attachment. However, the molecular mechanisms by which astrin-kinastrin fulfils these diverse roles are not fully understood. Here, we characterise a direct interaction between astrin and the mitotic kinase Plk1. We identify the Plk1-binding site on astrin as well as four Plk1 phosphorylation sites on astrin. Regulation of astrin by Plk1 is dispensable for bipolar spindle formation and bulk chromosome congression, but promotes stable microtubule-kinetochore attachments and metaphase plate maintenance. It is known that Plk1 activity is required for effective microtubule-kinetochore attachment formation, and we suggest that astrin phosphorylation by Plk1 contributes to this process.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Asociadas a Microtúbulos , Azul Alcián , Proteínas de Ciclo Celular/genética , Segregación Cromosómica , Células HeLa , Humanos , Cinetocoros , Metafase , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos , Mitosis , Fenazinas , Fenotiazinas , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Resorcinoles , Huso Acromático/genética , Quinasa Tipo Polo 1
5.
Mol Biol Cell ; 31(21): 2315-2330, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32755477

RESUMEN

Ubiquitin-dependent proteolysis of cyclin B and securin initiates sister chromatid segregation and anaphase. The anaphase-promoting complex/cyclosome and its coactivator CDC20 (APC/CCDC20) form the main ubiquitin E3 ligase for these two proteins. APC/CCDC20 is regulated by CDK1-cyclin B and counteracting PP1 and PP2A family phosphatases through modulation of both activating and inhibitory phosphorylation. Here, we report that PP1 promotes cyclin B destruction at the onset of anaphase by removing specific inhibitory phosphorylation in the N-terminus of CDC20. Depletion or chemical inhibition of PP1 stabilizes cyclin B and results in a pronounced delay at the metaphase-to-anaphase transition after chromosome alignment. This requirement for PP1 is lost in cells expressing CDK1 phosphorylation-defective CDC206A mutants. These CDC206A cells show a normal spindle checkpoint response and rapidly destroy cyclin B once all chromosomes have aligned and enter into anaphase in the absence of PP1 activity. PP1 therefore facilitates the metaphase-to-anaphase transition by promoting APC/CCDC20-dependent destruction of cyclin B in human cells.


Asunto(s)
Proteínas Cdc20/metabolismo , Segregación Cromosómica , Ciclina B/metabolismo , Receptores de Neuropéptido Y/metabolismo , Anafase , Células HeLa , Humanos , Metafase , Fosforilación , Procesamiento Proteico-Postraduccional , Proteolisis
6.
J Cell Sci ; 133(16)2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32665320

RESUMEN

During cell division, misaligned chromosomes are captured and aligned by motors before their segregation. The CENP-E motor is recruited to polar unattached kinetochores to facilitate chromosome alignment. The spindle checkpoint protein BubR1 (also known as BUB1B) has been reported as a CENP-E interacting partner, but the extent to which BubR1 contributes to CENP-E localization at kinetochores has remained controversial. Here we define the molecular determinants that specify the interaction between BubR1 and CENP-E. The basic C-terminal helix of BubR1 is necessary but not sufficient for CENP-E interaction, and a minimal key acidic patch on the kinetochore-targeting domain of CENP-E is also essential. We then demonstrate that BubR1 is required for the recruitment of CENP-E to kinetochores to facilitate chromosome alignment. This BubR1-CENP-E axis is critical for alignment of chromosomes that have failed to congress through other pathways and recapitulates the major known function of CENP-E. Overall, our studies define the molecular basis and the function for CENP-E recruitment to BubR1 at kinetochores during mammalian mitosis.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteínas Cromosómicas no Histona , Cinetocoros , Animales , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica , Células HeLa , Humanos , Microtúbulos , Mitosis/genética , Proteínas Serina-Treonina Quinasas/genética , Huso Acromático
7.
J Cell Biol ; 219(2)2019 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31881080

RESUMEN

Aurora kinases create phosphorylation gradients within the spindle during prometaphase and anaphase, thereby locally regulating factors that promote spindle organization, chromosome condensation and movement, and cytokinesis. We show that one such factor is the kinesin KIF4A, which is present along the chromosome axes throughout mitosis and the central spindle in anaphase. These two pools of KIF4A depend on condensin I and PRC1, respectively. Previous work has shown KIF4A is activated by Aurora B at the anaphase central spindle. However, whether or not chromosome-associated KIF4A bound to condensin I is regulated by Aurora kinases remain unclear. To determine the roles of the two different pools of KIF4A, we generated specific point mutants that are unable to interact with either condensin I or PRC1 or are deficient for Aurora kinase regulation. By analyzing these mutants, we show that Aurora A phosphorylates the condensin I-dependent pool of KIF4A and thus actively promotes chromosome congression from the spindle poles to the metaphase plate.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Aurora Quinasa A/metabolismo , Segregación Cromosómica/fisiología , Cromosomas/metabolismo , Cromosomas/fisiología , Proteínas de Unión al ADN/metabolismo , Cinesinas/metabolismo , Complejos Multiproteicos/metabolismo , Anafase/fisiología , Línea Celular , Línea Celular Tumoral , Posicionamiento de Cromosoma/fisiología , Células HEK293 , Células HeLa , Humanos , Microtúbulos/metabolismo , Mitosis/fisiología , Fosforilación/fisiología , Huso Acromático/metabolismo , Huso Acromático/fisiología
8.
J Cell Biol ; 218(10): 3188-3199, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31511308

RESUMEN

During mitosis, the formation of microtubule-kinetochore attachments is monitored by the serine/threonine kinase monopolar spindle 1 (MPS1). MPS1 is recruited to unattached kinetochores where it phosphorylates KNL1, BUB1, and MAD1 to initiate the spindle assembly checkpoint. This arrests the cell cycle until all kinetochores have been stably captured by microtubules. MPS1 also contributes to the error correction process rectifying incorrect kinetochore attachments. MPS1 activity at kinetochores requires autophosphorylation at multiple sites including threonine 676 in the activation segment or "T-loop." We now demonstrate that the BUBR1-bound pool of PP2A-B56 regulates MPS1 T-loop autophosphorylation and hence activation status in mammalian cells. Overriding this regulation using phosphomimetic mutations in the MPS1 T-loop to generate a constitutively active kinase results in a prolonged mitotic arrest with continuous turnover of microtubule-kinetochore attachments. Dynamic regulation of MPS1 catalytic activity by kinetochore-localized PP2A-B56 is thus critical for controlled MPS1 activity and timely cell cycle progression.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Células Cultivadas , Células HEK293 , Células HeLa , Humanos
9.
FEBS Lett ; 593(20): 2889-2907, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31469407

RESUMEN

In mitosis, the spindle assembly checkpoint (SAC) monitors the formation of microtubule-kinetochore attachments during capture of chromosomes by the mitotic spindle. Spindle assembly is complete once there are no longer any unattached kinetochores. Here, we will discuss the mechanism and key components of spindle checkpoint signalling. Unattached kinetochores bind the principal spindle checkpoint kinase monopolar spindle 1 (MPS1). MPS1 triggers the recruitment of other spindle checkpoint proteins and the formation of a soluble inhibitor of anaphase, thus preventing exit from mitosis. On microtubule attachment, kinetochores become checkpoint silent due to the actions of PP2A-B56 and PP1. This SAC responsive period has to be coordinated with mitotic spindle formation to ensure timely mitotic exit and accurate chromosome segregation. We focus on the molecular mechanisms by which the SAC permissive state is created, describing a central role for CDK1-cyclin B1 and its counteracting phosphatase PP2A-B55. Furthermore, we discuss how CDK1-cyclin B1, through its interaction with MAD1, acts as an integral component of the SAC, and actively orchestrates checkpoint signalling and thus contributes to the faithful execution of mitosis.


Asunto(s)
Proteína Quinasa CDC2/genética , Ciclina B1/genética , Cinetocoros/metabolismo , Puntos de Control de la Fase M del Ciclo Celular , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica , Cromosomas Humanos/química , Cromosomas Humanos/metabolismo , Ciclina B1/metabolismo , Regulación de la Expresión Génica , Células HeLa , Humanos , Cinetocoros/ultraestructura , Microtúbulos/ultraestructura , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Receptores de Neuropéptido Y/genética , Receptores de Neuropéptido Y/metabolismo , Transducción de Señal , Huso Acromático/ultraestructura
10.
J Cell Biol ; 218(4): 1182-1199, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30674582

RESUMEN

Spindle checkpoint signaling is initiated by recruitment of the kinase MPS1 to unattached kinetochores during mitosis. We show that CDK1-CCNB1 and a counteracting phosphatase PP2A-B55 regulate the engagement of human MPS1 with unattached kinetochores by controlling the phosphorylation status of S281 in the kinetochore-binding domain. This regulation is essential for checkpoint signaling, since MPS1S281A is not recruited to unattached kinetochores and fails to support the recruitment of other checkpoint proteins. Directly tethering MPS1S281A to the kinetochore protein Mis12 bypasses this regulation and hence the requirement for S281 phosphorylation in checkpoint signaling. At the metaphase-anaphase transition, MPS1 S281 dephosphorylation is delayed because PP2A-B55 is negatively regulated by CDK1-CCNB1 and only becomes fully active once CCNB1 concentration falls below a characteristic threshold. This mechanism prolongs the checkpoint-responsive period when MPS1 can localize to kinetochores and enables a response to late-stage spindle defects. By acting together, CDK1-CCNB1 and PP2A-B55 thus create a spindle checkpoint-permissive state and ensure the fidelity of mitosis.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/enzimología , Ciclina B1/metabolismo , Cinetocoros/enzimología , Puntos de Control de la Fase M del Ciclo Celular , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Aurora Quinasa B/genética , Aurora Quinasa B/metabolismo , Proteína Quinasa CDC2/genética , Proteínas de Ciclo Celular/genética , Núcleo Celular/genética , Ciclina B1/genética , Células HEK293 , Células HeLa , Humanos , Fosforilación , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Epitelio Pigmentado de la Retina/enzimología , Transducción de Señal , Factores de Tiempo
11.
J Cell Biol ; 218(4): 1108-1117, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30674583

RESUMEN

Cyclin B-dependent kinase (CDK1-CCNB1) promotes entry into mitosis. Additionally, it inhibits mitotic exit by activating the spindle checkpoint. This latter role is mediated through phosphorylation of the checkpoint kinase MPS1 and other spindle checkpoint proteins. We find that CDK1-CCNB1 localizes to unattached kinetochores and like MPS1 is lost from these structures upon microtubule attachment. This suggests that CDK1-CCNB1 is an integral component and not only an upstream regulator of the spindle checkpoint pathway. Complementary proteomic and cell biological analysis demonstrate that the spindle checkpoint protein MAD1 is one of the major components of CCNB1 complexes, and that CCNB1 is recruited to unattached kinetochores in an MPS1-dependent fashion through interaction with the first 100 amino acids of MAD1. This MPS1 and MAD1-dependent pool of CDK1-CCNB1 creates a positive feedback loop necessary for timely recruitment of MPS1 to kinetochores during mitotic entry and for sustained spindle checkpoint arrest. CDK1-CCNB1 is therefore an integral component of the spindle checkpoint, ensuring the fidelity of mitosis.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclina B1/metabolismo , Cinetocoros/enzimología , Puntos de Control de la Fase M del Ciclo Celular , Transducción de Señal , Huso Acromático/enzimología , Proteína Quinasa CDC2/genética , Proteínas de Ciclo Celular/genética , Ciclina B1/genética , Células HEK293 , Células HeLa , Humanos , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Huso Acromático/genética , Factores de Tiempo
12.
Science ; 355(6324): 459-460, 2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-28154036
13.
J Cell Biol ; 206(7): 833-42, 2014 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-25246613

RESUMEN

The spindle assembly checkpoint (SAC) monitors correct attachment of chromosomes to microtubules, an important safeguard mechanism ensuring faithful chromosome segregation in eukaryotic cells. How the SAC signal is turned off once all the chromosomes have successfully attached to the spindle remains an unresolved question. Mps1 phosphorylation of Knl1 results in recruitment of the SAC proteins Bub1, Bub3, and BubR1 to the kinetochore and production of the wait-anaphase signal. SAC silencing is therefore expected to involve a phosphatase opposing Mps1. Here we demonstrate in vivo and in vitro that BubR1-associated PP2A-B56 is a key phosphatase for the removal of the Mps1-mediated Knl1 phosphorylations necessary for Bub1/BubR1 recruitment in mammalian cells. SAC silencing is thus promoted by a negative feedback loop involving the Mps1-dependent recruitment of a phosphatase opposing Mps1. Our findings extend the previously reported role for BubR1-associated PP2A-B56 in opposing Aurora B and suggest that BubR1-bound PP2A-B56 integrates kinetochore surveillance and silencing of the SAC.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Puntos de Control de la Fase M del Ciclo Celular , Proteínas Asociadas a Microtúbulos/metabolismo , Proteína Fosfatasa 2/fisiología , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Células HeLa , Humanos , Cinetocoros/enzimología , Fosforilación , Transporte de Proteínas
14.
Mol Cell ; 52(3): 393-405, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24120663

RESUMEN

Cytokinesis follows separase activation and chromosome segregation. This order is ensured in budding yeast by the mitotic exit network (MEN), where Cdc14p dephosphorylates key conserved Cdk1-substrates exemplified by the anaphase spindle-elongation protein Ase1p. However, in metazoans, MEN and Cdc14 function is not conserved. Instead, the PP2A-B55α/ENSA/Greatwall (BEG) pathway controls the human Ase1p ortholog PRC1. In this pathway, PP2A-B55 inhibition is coupled to Cdk1-cyclin B activity, whereas separase inhibition is maintained by cyclin B concentration. This creates two cyclin B thresholds during mitotic exit. Simulation and experiments using PRC1 as a model substrate show that the first threshold permits separase activation and chromosome segregation, and the second permits PP2A-B55 activation and initiation of cytokinesis. Removal of the ENSA/Greatwall (EG) timer module eliminates this second threshold, as well as associated delay in PRC1 dephosphorylation and initiation of cytokinesis, by uncoupling PP2A-B55 from Cdk1-cyclin B activity. Therefore, temporal order during mitotic exit is promoted by the metazoan BEG pathway.


Asunto(s)
Segregación Cromosómica/genética , Citocinesis/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína Quinasa CDC2/metabolismo , Cromosomas/genética , Ciclina B/metabolismo , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/genética , Mitosis/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Proteína Fosfatasa 2/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Fosfatasas , Separasa/genética , Separasa/metabolismo , Transducción de Señal/genética
15.
J Cell Biol ; 202(4): 605-21, 2013 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-23940115

RESUMEN

Anaphase central spindle formation is controlled by the microtubule-stabilizing factor PRC1 and the kinesin KIF4A. We show that an MKlp2-dependent pool of Aurora B at the central spindle, rather than global Aurora B activity, regulates KIF4A accumulation at the central spindle. KIF4A phosphorylation by Aurora B stimulates the maximal microtubule-dependent ATPase activity of KIF4A and promotes its interaction with PRC1. In the presence of phosphorylated KIF4A, microtubules grew more slowly and showed long pauses in growth, resulting in the generation of shorter PRC1-stabilized microtubule overlaps in vitro. Cells expressing only mutant forms of KIF4A lacking the Aurora B phosphorylation site overextended the anaphase central spindle, demonstrating that this regulation is crucial for microtubule length control in vivo. Aurora B therefore ensures that suppression of microtubule dynamic instability by KIF4A is restricted to a specific subset of microtubules and thereby contributes to central spindle size control in anaphase.


Asunto(s)
Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Huso Acromático/metabolismo , Animales , Aurora Quinasa B , Aurora Quinasas , Células Cultivadas , Células HeLa , Humanos , Spodoptera
16.
J Cell Sci ; 126(Pt 15): 3429-40, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23729733

RESUMEN

Mutations in the PPP6C catalytic subunit of protein phosphatase 6 (PP6) are drivers for the development of melanoma. Here, we analyse a panel of melanoma-associated mutations in PPP6C and find that these generally compromise assembly of the PP6 holoenzyme and catalytic activity towards a model substrate. Detailed analysis of one mutant, PPP6C-H114Y, in both primary melanoma and engineered cell lines reveals it is destabilized and undergoes increased proteasome-mediated turnover. Global analysis of phosphatase substrates by mass spectrometry identifies the oncogenic kinase Aurora-A as the major PP6 substrate that is dysregulated under these conditions. Accordingly, cells lacking PPP6C or carrying the PPP6C-H114Y allele have elevated Aurora-A kinase activity and display chromosome instability with associated Aurora-A-dependent micronucleation. Chromosomes mis-segregated to these micronuclei are preferentially stained by the DNA damage marker γ-H2AX, suggesting that loss of PPP6C promotes both chromosome instability and DNA damage. These findings support the view that formation of micronuclei rather than chromosome instability alone explains how loss of PPP6C, and more generally mitotic spindle and centrosome defects, can act as drivers for genome instability in melanoma and other cancers.


Asunto(s)
Aurora Quinasa A/metabolismo , Inestabilidad Cromosómica , Daño del ADN , Melanoma/genética , Fosfoproteínas Fosfatasas/genética , Secuencia de Aminoácidos , Aurora Quinasa A/genética , Línea Celular Tumoral , Células HeLa , Humanos , Melanoma/enzimología , Melanoma/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación
17.
J Cell Biol ; 198(6): 1039-54, 2012 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-22965910

RESUMEN

The cytoplasmic dynein motor generates pulling forces to center and orient the mitotic spindle within the cell. During this positioning process, dynein oscillates from one pole of the cell cortex to the other but only accumulates at the pole farthest from the spindle. Here, we show that dynein light chain 1 (DYNLL1) is required for this asymmetric cortical localization of dynein and has a specific function defining spindle orientation. DYNLL1 interacted with a spindle-microtubule-associated adaptor formed by CHICA and HMMR via TQT motifs in CHICA. In cells depleted of CHICA or HMMR, the mitotic spindle failed to orient correctly in relation to the growth surface. Furthermore, CHICA TQT motif mutants localized to the mitotic spindle but failed to recruit DYNLL1 to spindle microtubules and did not correct the spindle orientation or dynein localization defects. These findings support a model where DYNLL1 and CHICA-HMMR form part of the regulatory system feeding back spindle position to dynein at the cell cortex.


Asunto(s)
Dineínas Citoplasmáticas/genética , Dineínas Citoplasmáticas/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Huso Acromático/genética , Huso Acromático/metabolismo , Secuencias de Aminoácidos/genética , Proteínas de Ciclo Celular , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Células HEK293 , Células HeLa , Humanos , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Mitosis/genética , Mitosis/fisiología , Orientación/fisiología
18.
J Cell Sci ; 124(Pt 14): 2323-34, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21709074

RESUMEN

Dynamic control of protein phosphorylation is necessary for the regulation of many cellular processes, including mitosis and cytokinesis. Indeed, although the central role of protein kinases is widely appreciated and intensely studied, the importance of protein phosphatases is often overlooked. Recent studies, however, have highlighted the considerable role of protein phosphatases in both the spatial and temporal control of protein kinase activity, and the modulation of substrate phosphorylation. Here, we will focus on recent advances in our understanding of phosphatase structure, and the importance of phosphatase function in the control of mitotic spindle formation, chromosome architecture and cohesion, and cell division.


Asunto(s)
Mitosis/fisiología , Fosfoproteínas Fosfatasas/fisiología , Animales , Humanos , Ratones , Mitosis/genética , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Procesamiento Proteico-Postraduccional , Huso Acromático/genética , Huso Acromático/metabolismo
19.
J Cell Biol ; 192(6): 959-68, 2011 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-21402792

RESUMEN

Astrin is a mitotic spindle-associated protein required for the correct alignment of all chromosomes at the metaphase plate. Astrin depletion delays chromosome alignment and causes the loss of normal spindle architecture and sister chromatid cohesion before anaphase onset. Here we describe an astrin complex containing kinastrin/SKAP, a novel kinetochore and mitotic spindle protein, and three minor interaction partners: dynein light chain, Plk1, and Sgo2. Kinastrin is the major astrin-interacting protein in mitotic cells, and is required for astrin targeting to microtubule plus ends proximal to the plus tip tracking protein EB1. Cells overexpressing or depleted of kinastrin mislocalize astrin and show the same mitotic defects as astrin-depleted cells. Importantly, astrin fails to localize to and track microtubule plus ends in cells depleted of or overexpressing kinastrin. These findings suggest that microtubule plus end targeting of astrin is required for normal spindle architecture and chromosome alignment, and that perturbations of this pathway result in delayed mitosis and nonphysiological separase activation.


Asunto(s)
Azul Alcián/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromosomas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Fenazinas/metabolismo , Fenotiazinas/metabolismo , Resorcinoles/metabolismo , Proteínas de Ciclo Celular/genética , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/genética , Complejos Multiproteicos/metabolismo , Interferencia de ARN , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Huso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
20.
J Cell Biol ; 191(7): 1315-32, 2010 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-21187329

RESUMEN

Many protein kinases are activated by a conserved regulatory step involving T-loop phosphorylation. Although there is considerable focus on kinase activator proteins, the importance of specific T-loop phosphatases reversing kinase activation has been underappreciated. We find that the protein phosphatase 6 (PP6) holoenzyme is the major T-loop phosphatase for Aurora A, an essential mitotic kinase. Loss of PP6 function by depletion of catalytic or regulatory subunits interferes with spindle formation and chromosome alignment because of increased Aurora A activity. Aurora A T-loop phosphorylation and the stability of the Aurora A-TPX2 complex are increased in cells depleted of PP6 but not other phosphatases. Furthermore, purified PP6 acts as a T-loop phosphatase for Aurora A-TPX2 complexes in vitro, whereas catalytically inactive mutants cannot dephosphorylate Aurora A or rescue the PPP6C depletion phenotype. These results demonstrate a hitherto unappreciated role for PP6 as the T-loop phosphatase regulating Aurora A activity during spindle formation and suggest the general importance of this form of regulation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis/fisiología , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Huso Acromático/fisiología , Anafase/genética , Antígenos Nucleares/metabolismo , Aurora Quinasas , Azepinas/farmacología , Dominio Catalítico/genética , Proteínas de Ciclo Celular/genética , Línea Celular , Núcleo Celular/efectos de los fármacos , Núcleo Celular/genética , Núcleo Celular/patología , Segregación Cromosómica/genética , Ciclina B/metabolismo , Fibroblastos/patología , Células HeLa , Histonas/genética , Histonas/metabolismo , Holoenzimas/genética , Holoenzimas/metabolismo , Humanos , Cinesinas/antagonistas & inhibidores , Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Modelos Biológicos , Mutación/genética , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteínas Nucleares/genética , Fosfoproteínas Fosfatasas/genética , Monoéster Fosfórico Hidrolasas/genética , Fosforilación/efectos de los fármacos , Unión Proteica/fisiología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Pirimidinas/farmacología , ARN Interferente Pequeño/genética , Huso Acromático/efectos de los fármacos , Telofase/genética , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Quinasa Tipo Polo 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...