Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652805

RESUMEN

The bundle sheath cell (BSC) layer tightly enveloping the xylem throughout the leaf is recognized as a major signal-perceiving "valve" in series with stomata, regulating leaf hydraulic conductance (Kleaf) and thereby radial water flow via the transpiring leaf. The BSC blue light (BL) signaling pathway increases Kleaf and the underlying BSC water permeability. Here, we explored the hypothesis that BSCs also harbor a Kleaf-downregulating signaling pathway related to the stress phytohormone abscisic acid (ABA). We employed fluorescence imaging of xylem sap in detached leaves and BSC protoplasts from different genotypes of Arabidopsis (Arabidopsis thaliana) plants, using pH and membrane potential probes to monitor physiological responses to ABA and BL in combination with pharmacological agents. We found that BL-enhanced Kleaf required elevated BSC cytosolic Ca2+. ABA inhibited BL-activated xylem-sap-acidifying BSC H + -ATPase AHA2 (Arabidopsis H + -ATPase 2), resulting in depolarized BSCs and alkalinized xylem sap. ABA also stimulated BSC vacuolar H + -ATPase (VHA), which alkalinized the BSC cytosol. Each pump stimulation, AHA2 by BL and VHA by ABA (under BL), also required Ca2+. ABA stimulated VHA in the dark depending on Ca2+, but only in an alkaline external medium. Taken together with earlier findings on the pH sensitivity of BSC osmotic water permeability (i.e., aquaporin activity), our results suggest a Ca2+-dependent and pH-mediated causative link between the BL- and ABA-regulated activities of two BSC H + -ATPases and Kleaf.

2.
New Phytol ; 241(4): 1404-1414, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38155452

RESUMEN

Light intensity and quality influence photosynthesis directly but also have an indirect effect by increasing stomatal apertures and enhancing gas exchange. Consequently, in areas such as the upper canopy, a high water demand for transpiration and temperature regulation is created. This paper explores how light intensity and the natural high Blue-Light (BL) : Red-Light (RL) ratio in these areas, is important for controlling leaf hydraulic conductance (Kleaf ) by BL signal transduction, increasing water permeability in cells surrounding the vascular tissue, in supporting the enormous water demands. Conversely, shaded inner-canopy areas receive less radiation, have lower water and cooling demands, and exhibit reduced Kleaf due to diminished intensity and BL induction. Intriguingly, shaded leaves display higher water-use efficiency (compared with upper-canopy) due to decreased transpiration and cooling requirements while the presence of RL supports photosynthesis.


Asunto(s)
Hojas de la Planta , Agua , Agua/fisiología , Hojas de la Planta/fisiología , Plantas , Transpiración de Plantas/fisiología , Estomas de Plantas/fisiología
3.
Plant Cell ; 34(6): 2328-2342, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35285491

RESUMEN

The Arabidopsis (Arabidopsis thaliana) leaf veins bundle-sheath cells (BSCs)-a selective barrier to water and solutes entering the mesophyll-increase the leaf radial hydraulic conductance (Kleaf) by acidifying the xylem sap by their plasma membrane H+-ATPase,  AHA2. Based on this and on the BSCs' expression of phototropins PHOT1 and PHOT2, and the known blue light (BL)-induced Kleaf increase, we hypothesized that, resembling the guard cells, BL perception by the BSCs' phots activates its H+-ATPase, which, consequently, upregulates Kleaf. Indeed, under BL, the Kleaf of the knockout mutant lines phot1-5, phot2-1, phot1-5 phot2-1, and aha2-4 was lower than that of the wild-type (WT). BSC-only-directed complementation of phot1-5 or aha2-4 by PHOT1 or AHA2, respectively, restored the BL-induced Kleaf increase. BSC-specific silencing of PHOT1 or PHOT2 prevented such Kleaf increase. A xylem-fed kinase inhibitor (tyrphostin 9) replicated this also in WT plants. White light-ineffective in the phot1-5 mutant-acidified the xylem sap (relative to darkness) in WT and in the PHOT1-complemented phot1-5. These results, supported by BL increase of BSC protoplasts' water permeability and cytosolic pH and their hyperpolarization by BL, identify the BSCs as a second phot-controlled water conductance element in leaves, in series with stomatal conductance. Through both, BL regulates the leaf water balance.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Luz , Fototropinas/genética , Fototropinas/metabolismo , Hojas de la Planta/metabolismo , Haz Vascular de Plantas/metabolismo , ATPasas de Translocación de Protón/metabolismo , Agua/metabolismo
4.
Plant J ; 106(2): 301-313, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33735498

RESUMEN

The leaf vascular bundle sheath cells (BSCs) that tightly envelop the leaf veins, are a selective and dynamic barrier to xylem sap water and solutes radially entering the mesophyll cells. Under normal conditions, xylem sap pH below 6 is presumably important for driving and regulating the transmembranal solute transport. Having discovered recently a differentially high expression of a BSC proton pump, AHA2, we now test the hypothesis that it regulates the xylem sap pH and leaf radial water fluxes. We monitored the xylem sap pH in the veins of detached leaves of wild-type Arabidopsis, AHA mutants and aha2 mutants complemented with AHA2 gene solely in BSCs. We tested an AHA inhibitor (vanadate) and stimulator (fusicoccin), and different pH buffers. We monitored their impact on the xylem sap pH and the leaf hydraulic conductance (Kleaf ), and the effect of pH on the water osmotic permeability (Pf ) of isolated BSCs protoplasts. We found that AHA2 is necessary for xylem sap acidification, and in turn, for elevating Kleaf . Conversely, AHA2 knockdown, which alkalinized the xylem sap, or, buffering its pH to 7.5, reduced Kleaf , and elevating external pH to 7.5 decreased the BSCs Pf . All these showed a causative link between AHA2 activity in BSCs and leaf radial hydraulic water conductance.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Hojas de la Planta/fisiología , ATPasas de Translocación de Protón/metabolismo , Xilema/fisiología , Arabidopsis/enzimología , Arabidopsis/metabolismo , Concentración de Iones de Hidrógeno , Hojas de la Planta/enzimología , Hojas de la Planta/metabolismo , Estomas de Plantas/citología , Estomas de Plantas/enzimología , Estomas de Plantas/fisiología , Transpiración de Plantas/fisiología , Xilema/enzimología , Xilema/metabolismo
5.
J Vis Exp ; (162)2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32831303

RESUMEN

Food security for the growing global population is a major concern. The data provided by genomic tools far exceeds the supply of phenotypic data, creating a knowledge gap. To meet the challenge of improving crops to feed the growing global population, this gap must be bridged. Physiological traits are considered key functional traits in the context of responsiveness or sensitivity to environmental conditions. Many recently introduced high-throughput (HTP) phenotyping techniques are based on remote sensing or imaging and are capable of directly measuring morphological traits, but measure physiological parameters mainly indirectly. This paper describes a method for direct physiological phenotyping that has several advantages for the functional phenotyping of plant-environment interactions. It helps users overcome the many challenges encountered in the use of load-cell gravimetric systems and pot experiments. The suggested techniques will enable users to distinguish between soil weight, plant weight and soil water content, providing a method for the continuous and simultaneous measurement of dynamic soil, plant and atmosphere conditions, alongside the measurement of key physiological traits. This method allows researchers to closely mimic field stress scenarios while taking into consideration the environment's effects on the plants' physiology. This method also minimizes pot effects, which are one of the major problems in pre-field phenotyping. It includes a feed-back fertigation system that enables a truly randomized experimental design at a field-like plant density. This system detects the soil-water-content limiting threshold (θ) and allows for the translation of data into knowledge through the use of a real-time analytic tool and an online statistical resource. This method for the rapid and direct measurement of the physiological responses of multiple plants to a dynamic environment has great potential for use in screening for beneficial traits associated with responses to abiotic stress, in the context of pre-field breeding and crop improvement.


Asunto(s)
Fenómenos Fisiológicos de las Plantas , Fenotipo , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...