Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
2.
Comput Biol Med ; 177: 108628, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38810476

RESUMEN

BACKGROUND AND OBJECTIVE: The metabolic syndrome induced by obesity is closely associated with cardiovascular disease, and the prevalence is increasing globally, year by year. Obesity is a risk marker for detecting this disease. However, current research on computer-aided detection of adipose distribution is hampered by the lack of open-source large abdominal adipose datasets. METHODS: In this study, a benchmark Abdominal Adipose Tissue CT Image Dataset (AATCT-IDS) containing 300 subjects is prepared and published. AATCT-IDS publics 13,732 raw CT slices, and the researchers individually annotate the subcutaneous and visceral adipose tissue regions of 3213 of those slices that have the same slice distance to validate denoising methods, train semantic segmentation models, and study radiomics. For different tasks, this paper compares and analyzes the performance of various methods on AATCT-IDS by combining the visualization results and evaluation data. Thus, verify the research potential of this data set in the above three types of tasks. RESULTS: In the comparative study of image denoising, algorithms using a smoothing strategy suppress mixed noise at the expense of image details and obtain better evaluation data. Methods such as BM3D preserve the original image structure better, although the evaluation data are slightly lower. The results show significant differences among them. In the comparative study of semantic segmentation of abdominal adipose tissue, the segmentation results of adipose tissue by each model show different structural characteristics. Among them, BiSeNet obtains segmentation results only slightly inferior to U-Net with the shortest training time and effectively separates small and isolated adipose tissue. In addition, the radiomics study based on AATCT-IDS reveals three adipose distributions in the subject population. CONCLUSION: AATCT-IDS contains the ground truth of adipose tissue regions in abdominal CT slices. This open-source dataset can attract researchers to explore the multi-dimensional characteristics of abdominal adipose tissue and thus help physicians and patients in clinical practice. AATCT-IDS is freely published for non-commercial purpose at: https://figshare.com/articles/dataset/AATTCT-IDS/23807256.

3.
Comput Biol Med ; 173: 108342, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522249

RESUMEN

BACKGROUND AND OBJECTIVE: Intracerebral hemorrhage is one of the diseases with the highest mortality and poorest prognosis worldwide. Spontaneous intracerebral hemorrhage (SICH) typically presents acutely, prompt and expedited radiological examination is crucial for diagnosis, localization, and quantification of the hemorrhage. Early detection and accurate segmentation of perihematomal edema (PHE) play a critical role in guiding appropriate clinical intervention and enhancing patient prognosis. However, the progress and assessment of computer-aided diagnostic methods for PHE segmentation and detection face challenges due to the scarcity of publicly accessible brain CT image datasets. METHODS: This study establishes a publicly available CT dataset named PHE-SICH-CT-IDS for perihematomal edema in spontaneous intracerebral hemorrhage. The dataset comprises 120 brain CT scans and 7,022 CT images, along with corresponding medical information of the patients. To demonstrate its effectiveness, classical algorithms for semantic segmentation, object detection, and radiomic feature extraction are evaluated. The experimental results confirm the suitability of PHE-SICH-CT-IDS for assessing the performance of segmentation, detection and radiomic feature extraction methods. RESULTS: This study conducts numerous experiments using classical machine learning and deep learning methods, demonstrating the differences in various segmentation and detection methods on the PHE-SICH-CT-IDS. The highest precision achieved in semantic segmentation is 76.31%, while object detection attains a maximum precision of 97.62%. The experimental results on radiomic feature extraction and analysis prove the suitability of PHE-SICH-CT-IDS for evaluating image features and highlight the predictive value of these features for the prognosis of SICH patients. CONCLUSION: To the best of our knowledge, this is the first publicly available dataset for PHE in SICH, comprising various data formats suitable for applications across diverse medical scenarios. We believe that PHE-SICH-CT-IDS will allure researchers to explore novel algorithms, providing valuable support for clinicians and patients in the clinical setting. PHE-SICH-CT-IDS is freely published for non-commercial purpose at https://figshare.com/articles/dataset/PHE-SICH-CT-IDS/23957937.


Asunto(s)
Edema Encefálico , Humanos , Edema Encefálico/diagnóstico por imagen , Benchmarking , Radiómica , Semántica , Edema , Hemorragia Cerebral/diagnóstico por imagen , Tomografía Computarizada por Rayos X
4.
Comput Struct Biotechnol J ; 24: 205-212, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38510535

RESUMEN

The diagnosis of cancer is typically based on histopathological sections or biopsies on glass slides. Artificial intelligence (AI) approaches have greatly enhanced our ability to extract quantitative information from digital histopathology images as a rapid growth in oncology data. Gynecological cancers are major diseases affecting women's health worldwide. They are characterized by high mortality and poor prognosis, underscoring the critical importance of early detection, treatment, and identification of prognostic factors. This review highlights the various clinical applications of AI in gynecological cancers using digitized histopathology slides. Particularly, deep learning models have shown promise in accurately diagnosing, classifying histopathological subtypes, and predicting treatment response and prognosis. Furthermore, the integration with transcriptomics, proteomics, and other multi-omics techniques can provide valuable insights into the molecular features of diseases. Despite the considerable potential of AI, substantial challenges remain. Further improvements in data acquisition and model optimization are required, and the exploration of broader clinical applications, such as the biomarker discovery, need to be explored.

5.
Comput Biol Med ; 171: 108217, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38430743

RESUMEN

BACKGROUND: Endometrial cancer is one of the most common tumors in the female reproductive system and is the third most common gynecological malignancy that causes death after ovarian and cervical cancer. Early diagnosis can significantly improve the 5-year survival rate of patients. With the development of artificial intelligence, computer-assisted diagnosis plays an increasingly important role in improving the accuracy and objectivity of diagnosis and reducing the workload of doctors. However, the absence of publicly available image datasets restricts the application of computer-assisted diagnostic techniques. METHODS: In this paper, a publicly available Endometrial Cancer PET/CT Image Dataset for Evaluation of Semantic Segmentation and Detection of Hypermetabolic Regions (ECPC-IDS) are published. Specifically, the segmentation section includes PET and CT images, with 7159 images in multiple formats totally. In order to prove the effectiveness of segmentation on ECPC-IDS, six deep learning semantic segmentation methods are selected to test the image segmentation task. The object detection section also includes PET and CT images, with 3579 images and XML files with annotation information totally. Eight deep learning methods are selected for experiments on the detection task. RESULTS: This study is conduct using deep learning-based semantic segmentation and object detection methods to demonstrate the distinguishability on ECPC-IDS. From a separate perspective, the minimum and maximum values of Dice on PET images are 0.546 and 0.743, respectively. The minimum and maximum values of Dice on CT images are 0.012 and 0.510, respectively. The target detection section's maximum mAP values on PET and CT images are 0.993 and 0.986, respectively. CONCLUSION: As far as we know, this is the first publicly available dataset of endometrial cancer with a large number of multi-modality images. ECPC-IDS can assist researchers in exploring new algorithms to enhance computer-assisted diagnosis, benefiting both clinical doctors and patients. ECPC-IDS is also freely published for non-commercial at: https://figshare.com/articles/dataset/ECPC-IDS/23808258.


Asunto(s)
Neoplasias Endometriales , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Femenino , Inteligencia Artificial , Procesamiento de Imagen Asistido por Computador/métodos , Semántica , Benchmarking , Neoplasias Endometriales/diagnóstico por imagen
6.
Data Brief ; 53: 110141, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38406254

RESUMEN

A benchmark histopathological Hematoxylin and Eosin (H&E) image dataset for Cervical Adenocarcinoma in Situ (CAISHI), containing 2240 histopathological images of Cervical Adenocarcinoma in Situ (AIS), is established to fill the current data gap, of which 1010 are images of normal cervical glands and another 1230 are images of cervical AIS. The sampling method is endoscope biopsy. Pathological sections are obtained by H&E staining from Shengjing Hospital, China Medical University. These images have a magnification of 100 and are captured by the Axio Scope. A1 microscope. The size of the image is 3840 × 2160 pixels, and the format is ".png". The collection of CAISHI is subject to an ethical review by China Medical University with approval number 2022PS841K. These images are analyzed at multiple levels, including classification tasks and image retrieval tasks. A variety of computer vision and machine learning methods are used to evaluate the performance of the data. For classification tasks, a variety of classical machine learning classifiers such as k-means, support vector machines (SVM), and random forests (RF), as well as convolutional neural network classifiers such as Residual Network 50 (ResNet50), Vision Transformer (ViT), Inception version 3 (Inception-V3), and Visual Geometry Group Network 16 (VGG-16), are used. In addition, the Siamese network is used to evaluate few-shot learning tasks. In terms of image retrieval functions, color features, texture features, and deep learning features are extracted, and their performances are tested. CAISHI can help with the early diagnosis and screening of cervical cancer. Researchers can use this dataset to develop new computer-aided diagnostic tools that could improve the accuracy and efficiency of cervical cancer screening and advance the development of automated diagnostic algorithms.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38083212

RESUMEN

The development of information and communication technologies (ICT) changed many aspects of our lives, including cardiovascular research. This area of research is affected by the availability of open databases that can help conduct basic and applied research. In this study, we summarize the current state of knowledge in publicly available signal databases with seismocardiographic (SCG) signals in January 2023. Based on Google search results for the expression "seismocardiography dataset", we have found and described five databases with seismocardiograms, including three databases that contain SCG signals from healthy subjects, one database with data from porcine subjects, and one signal database with data obtained from human patients with valvular heart disease (VHD). All contain additional signals for reference points in the cardiac cycle. The most significant limitations of the described data sets are gender bias toward male subjects, the imbalance between healthy subjects, and subjects with two cardiovascular diseases (VHD and hemorrhage).


Asunto(s)
Enfermedades Cardiovasculares , Procesamiento de Señales Asistido por Computador , Humanos , Masculino , Femenino , Animales , Porcinos , Sexismo , Corazón , Bases de Datos Factuales
8.
Artículo en Inglés | MEDLINE | ID: mdl-38083468

RESUMEN

Signal quality significantly affects the processing, analysis, and interpretation of biomedical signals. There are many procedures for assessing signal quality that use averaged numerical values, thresholding, analysis in the time or frequency domain, or nonlinear approaches. An interesting approach to the assessment of signal quality is using symmetric projection attractor reconstruction (SPAR) analysis, which transforms an entire signal into a two-dimensional plot that reflects the waveform morphology. In this study, we present an application of SPAR to evaluate the quality of seismocardiograms (SCG signals) from the CEBS database, a publicly available seismocardiogram signal database. Visual inspection of symmetric projection attractors suggests that high-quality (clean) seismocardiogram projections resemble six-pointed asterisks (*), and any deviation from this shape suggests the influence of noise and artifacts.Clinical relevance- SPAR analysis enables quick identification of noise and artifacts that can affect the reliability of the diagnosis of cardiovascular diseases based on SCG signals.


Asunto(s)
Enfermedades Cardiovasculares , Procesamiento de Señales Asistido por Computador , Humanos , Reproducibilidad de los Resultados
9.
Comput Biol Med ; 167: 107620, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37922604

RESUMEN

In recent years, there is been a growing reliance on image analysis methods to bolster dentistry practices, such as image classification, segmentation and object detection. However, the availability of related benchmark datasets remains limited. Hence, we spent six years to prepare and test a bench Oral Implant Image Dataset (OII-DS) to support the work in this research domain. OII-DS is a benchmark oral image dataset consisting of 3834 oral CT imaging images and 15240 oral implant images. It serves the purpose of object detection and image classification. To demonstrate the validity of the OII-DS, for each function, the most representative algorithms and metrics are selected for testing and evaluation. For object detection, five object detection algorithms are adopted to test and four evaluation criteria are used to assess the detection of each of the five objects. Additionally, mean average precision serves as the evaluation metric for multi-objective detection. For image classification, 13 classifiers are used for testing and evaluating each of the five categories by meeting four evaluation criteria. Experimental results affirm the high quality of our data in OII-DS, rendering it suitable for evaluating object detection and image classification methods. Furthermore, OII-DS is openly available at the URL for non-commercial purpose: https://doi.org/10.6084/m9.figshare.22608790.


Asunto(s)
Algoritmos , Benchmarking , Procesamiento de Imagen Asistido por Computador/métodos
10.
Bioengineering (Basel) ; 10(11)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38002444

RESUMEN

Type 2 diabetes mellitus (T2D) poses a significant global health challenge and demands effective self-management strategies, including continuous blood glucose monitoring (CGM) and lifestyle adaptations. While CGM offers real-time glucose level assessment, the quest for minimizing trauma and enhancing convenience has spurred the need to explore non-invasive alternatives for monitoring vital signs in patients with T2D. Objective: This systematic review is the first that explores the current literature and critically evaluates the use and reporting of non-invasive wearable devices for monitoring vital signs in patients with T2D. Methods: Employing the PRISMA and PICOS guidelines, we conducted a comprehensive search to incorporate evidence from relevant studies, focusing on randomized controlled trials (RCTs), systematic reviews, and meta-analyses published since 2017. Of the 437 publications identified, seven were selected based on predetermined criteria. Results: The seven studies included in this review used various sensing technologies, such as heart rate monitors, accelerometers, and other wearable devices. Primary health outcomes included blood pressure measurements, heart rate, body fat percentage, and cardiorespiratory endurance. Non-invasive wearable devices demonstrated potential for aiding T2D management, albeit with variations in efficacy across studies. Conclusions: Based on the low number of studies with higher evidence levels (i.e., RCTs) that we were able to find and the significant differences in design between these studies, we conclude that further evidence is required to validate the application, efficacy, and real-world impact of these wearable devices. Emphasizing transparency in bias reporting and conducting in-depth research is crucial for fully understanding the implications and benefits of wearable devices in T2D management.

11.
BMJ Open ; 13(11): e072024, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37918930

RESUMEN

INTRODUCTION: Imprecise nutritional recommendations due to a lack of diagnostic test accuracy are a frequent problem for individuals with adverse reactions to foods but no precise diagnosis. Consequently, patients follow very broad and strict elimination diets to avoid uncontrolled symptoms such as diarrhoea and abdominal pain. Dietary limitations and the uncertainty of developing gastrointestinal symptoms after the inadvertent ingestion of food have been demonstrated to reduce the quality of life (QoL) of affected individuals and subsequently might increase the risk of malnutrition and intestinal dysbiosis. This trial aims to investigate the effects of a tailored diet based on the confocal laser endoscopy (CLE) examination result to limit the side effects of unspecific and broad elimination diets and to increase the patient's QoL. METHODS AND ANALYSIS: The study is designed as a prospective, double-blind, monocentric, randomised and controlled trial conducted at the University Hospital of Schleswig-Holstein, Campus Lübeck, Germany. One hundred seventy-two patients with non-IgE-related food allergies and positive CLE results will be randomised to either a tailored diet or a standard fivefold elimination diet. The primary endpoints are the difference between the end and the start of the intervention in health-related QoL and the sum score of the severity of symptoms after 12 weeks. Key secondary endpoints are changes in the severity of symptoms, further QoL measurements, self-assessed state of health and number of days with a pathologically altered stool. Microbiome diversity and metabolome of stool, urine and blood will also be investigated. Safety endpoints are body composition, body mass index and adverse events. ETHICS AND DISSEMINATION: The study protocol was accepted by the ethical committee of the University of Lübeck (AZ: 22-111) on 4 May2022. Results of the study will be published in peer-reviewed journals and presented at scientific meetings. TRIAL REGISTRATION NUMBER: German Clinical Trials Register (DRKS00029323).


Asunto(s)
Aplicaciones Móviles , Calidad de Vida , Humanos , Intolerancia Alimentaria , Dieta de Eliminación , Estudios Prospectivos , Método Doble Ciego , Endoscopía , Ensayos Clínicos Controlados Aleatorios como Asunto
12.
Sensors (Basel) ; 23(19)2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37837061

RESUMEN

Multiple attempts to quantify pain objectively using single measures of physiological body responses have been performed in the past, but the variability across participants reduces the usefulness of such methods. Therefore, this study aims to evaluate whether combining multiple autonomic parameters is more appropriate to quantify the perceived pain intensity of healthy subjects (HSs) and chronic back pain patients (CBPPs) during experimental heat pain stimulation. HS and CBPP received different heat pain stimuli adjusted for individual pain tolerance via a CE-certified thermode. Different sensors measured physiological responses. Machine learning models were trained to evaluate performance in distinguishing pain levels and identify key sensors and features for the classification task. The results show that distinguishing between no and severe pain is significantly easier than discriminating lower pain levels. Electrodermal activity is the best marker for distinguishing between low and high pain levels. However, recursive feature elimination showed that an optimal subset of features for all modalities includes characteristics retrieved from several modalities. Moreover, the study's findings indicate that differences in physiological responses to pain in HS and CBPP remain small.


Asunto(s)
Calor , Umbral del Dolor , Humanos , Voluntarios Sanos , Umbral del Dolor/fisiología , Percepción del Dolor/fisiología , Dolor de Espalda
13.
Sensors (Basel) ; 23(19)2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37837064

RESUMEN

Machine learning with deep neural networks (DNNs) is widely used for human activity recognition (HAR) to automatically learn features, identify and analyze activities, and to produce a consequential outcome in numerous applications. However, learning robust features requires an enormous number of labeled data. Therefore, implementing a DNN either requires creating a large dataset or needs to use the pre-trained models on different datasets. Multitask learning (MTL) is a machine learning paradigm where a model is trained to perform multiple tasks simultaneously, with the idea that sharing information between tasks can lead to improved performance on each individual task. This paper presents a novel MTL approach that employs combined training for human activities with different temporal scales of atomic and composite activities. Atomic activities are basic, indivisible actions that are readily identifiable and classifiable. Composite activities are complex actions that comprise a sequence or combination of atomic activities. The proposed MTL approach can help in addressing challenges related to recognizing and predicting both atomic and composite activities. It can also help in providing a solution to the data scarcity problem by simultaneously learning multiple related tasks so that knowledge from each task can be reused by the others. The proposed approach offers advantages like improved data efficiency, reduced overfitting due to shared representations, and fast learning through the use of auxiliary information. The proposed approach exploits the similarities and differences between multiple tasks so that these tasks can share the parameter structure, which improves model performance. The paper also figures out which tasks should be learned together and which tasks should be learned separately. If the tasks are properly selected, the shared structure of each task can help it learn more from other tasks.


Asunto(s)
Aprendizaje Profundo , Dispositivos Electrónicos Vestibles , Humanos , Actividades Cotidianas , Redes Neurales de la Computación , Aprendizaje Automático
14.
Comput Biol Med ; 165: 107388, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37696178

RESUMEN

Colorectal Cancer (CRC) is currently one of the most common and deadly cancers. CRC is the third most common malignancy and the fourth leading cause of cancer death worldwide. It ranks as the second most frequent cause of cancer-related deaths in the United States and other developed countries. Histopathological images contain sufficient phenotypic information, they play an indispensable role in the diagnosis and treatment of CRC. In order to improve the objectivity and diagnostic efficiency for image analysis of intestinal histopathology, Computer-aided Diagnosis (CAD) methods based on machine learning (ML) are widely applied in image analysis of intestinal histopathology. In this investigation, we conduct a comprehensive study on recent ML-based methods for image analysis of intestinal histopathology. First, we discuss commonly used datasets from basic research studies with knowledge of intestinal histopathology relevant to medicine. Second, we introduce traditional ML methods commonly used in intestinal histopathology, as well as deep learning (DL) methods. Then, we provide a comprehensive review of the recent developments in ML methods for segmentation, classification, detection, and recognition, among others, for histopathological images of the intestine. Finally, the existing methods have been studied, and the application prospects of these methods in this field are given.


Asunto(s)
Medicina , Diagnóstico por Computador , Procesamiento de Imagen Asistido por Computador , Intestinos , Aprendizaje Automático
15.
Comput Biol Med ; 166: 107501, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37742416

RESUMEN

Sleep is an important research area in nutritional medicine that plays a crucial role in human physical and mental health restoration. It can influence diet, metabolism, and hormone regulation, which can affect overall health and well-being. As an essential tool in the sleep study, the sleep stage classification provides a parsing of sleep architecture and a comprehensive understanding of sleep patterns to identify sleep disorders and facilitate the formulation of targeted sleep interventions. However, the class imbalance issue is typically salient in sleep datasets, which severely affects classification performances. To address this issue and to extract optimal multimodal features of EEG, EOG, and EMG that can improve the accuracy of sleep stage classification, a Borderline Synthetic Minority Oversampling Technique (B-SMOTE)-Based Supervised Convolutional Contrastive Learning (BST-SCCL) is proposed, which can avoid the risk of data mismatch between various sleep knowledge domains (varying health conditions and annotation rules) and strengthening learning characteristics of the N1 stage from the pair-wise segments comparison strategy. The lightweight residual network architecture with a novel truncated cross-entropy loss function is designed to accommodate multimodal time series and boost the training speed and performance stability. The proposed model has been validated on four well-known public sleep datasets (Sleep-EDF-20, Sleep-EDF-78, ISRUC-1, and ISRUC-3) and its superior performance (overall accuracy of 91.31-92.34%, MF1 of 88.21-90.08%, and Cohen's Kappa coefficient k of 0.87-0.89) has further demonstrated its effectiveness. It shows the great potential of contrastive learning for cross-domain knowledge interaction in precision medicine.

16.
Comput Biol Med ; 166: 107489, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37769461

RESUMEN

BACKGROUND: Flow experience is a specific positive and affective state that occurs when humans are completely absorbed in an activity and forget everything else. This state can lead to high performance, well-being, and productivity at work. Few studies have been conducted to determine the human flow experience using physiological wearable sensor devices. Other studies rely on self-reported data. METHODS: In this article, we use physiological data collected from 25 subjects with multimodal sensing devices, in particular the Empatica E4 wristband, the Emotiv Epoc X electroencephalography (EEG) headset, and the Biosignalplux RespiBAN - in arithmetic and reading tasks to automatically discriminate between flow and non-flow states using feature engineering and deep feature learning approaches. The most meaningful wearable device for flow detection is determined by comparing the performances of each device. We also investigate the connection between emotions and flow by testing transfer learning techniques involving an emotion recognition-related task on the source domain. RESULTS: The EEG sensor modalities yielded the best performances with an accuracy of 64.97%, and a macro Averaged F1 (AF1) score of 64.95%. An accuracy of 73.63% and an AF1 score of 72.70% were obtained after fusing all sensor modalities from all devices. Additionally, our proposed transfer learning approach using emotional arousal classification on the DEAP dataset led to an increase in performances with an accuracy of 75.10% and an AF1 score of 74.92%. CONCLUSION: The results of this study suggest that effective discrimination between flow and non-flow states is possible with multimodal sensor data. The success of transfer learning using the DEAP emotion dataset as a source domain indicates that emotions and flow are connected, and emotion recognition can be used as a latent task to enhance the performance of flow recognition.

17.
Sensors (Basel) ; 23(12)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37420718

RESUMEN

To drive safely, the driver must be aware of the surroundings, pay attention to the road traffic, and be ready to adapt to new circumstances. Most studies on driving safety focus on detecting anomalies in driver behavior and monitoring cognitive capabilities in drivers. In our study, we proposed a classifier for basic activities in driving a car, based on a similar approach that could be applied to the recognition of basic activities in daily life, that is, using electrooculographic (EOG) signals and a one-dimensional convolutional neural network (1D CNN). Our classifier achieved an accuracy of 80% for the 16 primary and secondary activities. The accuracy related to activities in driving, including crossroad, parking, roundabout, and secondary activities, was 97.9%, 96.8%, 97.4%, and 99.5%, respectively. The F1 score for secondary driving actions (0.99) was higher than for primary driving activities (0.93-0.94). Furthermore, using the same algorithm, it was possible to distinguish four activities related to activities of daily life that were secondary activities when driving a car.


Asunto(s)
Conducción de Automóvil , Conducción de Automóvil/psicología , Accidentes de Tránsito/prevención & control , Automóviles , Redes Neurales de la Computación , Algoritmos
18.
Comput Biol Med ; 162: 107070, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37295389

RESUMEN

Cervical cancer is the fourth most common cancer among women, and cytopathological images are often used to screen for this cancer. However, manual examination is very troublesome and the misdiagnosis rate is high. In addition, cervical cancer nest cells are denser and more complex, with high overlap and opacity, increasing the difficulty of identification. The appearance of the computer aided automatic diagnosis system solves this problem. In this paper, a weakly supervised cervical cancer nest image identification approach using Conjugated Attention Mechanism and Visual Transformer (CAM-VT), which can analyze pap slides quickly and accurately. CAM-VT proposes conjugated attention mechanism and visual transformer modules for local and global feature extraction respectively, and then designs an ensemble learning module to further improve the identification capability. In order to determine a reasonable interpretation, comparative experiments are conducted on our datasets. The average accuracy of the validation set of three repeated experiments using CAM-VT framework is 88.92%, which is higher than the optimal result of 22 well-known deep learning models. Moreover, we conduct ablation experiments and extended experiments on Hematoxylin and Eosin stained gastric histopathological image datasets to verify the ability and generalization ability of the framework. Finally, the top 5 and top 10 positive probability values of cervical nests are 97.36% and 96.84%, which have important clinical and practical significance. The experimental results show that the proposed CAM-VT framework has excellent performance in potential cervical cancer nest image identification tasks for practical clinical work.


Asunto(s)
Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/diagnóstico por imagen , Diagnóstico por Computador , Eosina Amarillenta-(YS) , Hematoxilina , Probabilidad , Procesamiento de Imagen Asistido por Computador
19.
Mov Disord ; 38(7): 1327-1335, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37166278

RESUMEN

BACKGROUND: Video-based tic detection and scoring is useful to independently and objectively assess tic frequency and severity in patients with Tourette syndrome. In trained raters, interrater reliability is good. However, video ratings are time-consuming and cumbersome, particularly in large-scale studies. Therefore, we developed two machine learning (ML) algorithms for automatic tic detection. OBJECTIVE: The aim of this study was to evaluate the performances of state-of-the-art ML approaches for automatic video-based tic detection in patients with Tourette syndrome. METHODS: We used 64 videos of n = 35 patients with Tourette syndrome. The data of six subjects (15 videos with ratings) were used as a validation set for hyperparameter optimization. For the binary classification task to distinguish between tic and no-tic segments, we established two different supervised learning approaches. First, we manually extracted features based on landmarks, which served as input for a Random Forest classifier (Random Forest). Second, a fully automated deep learning approach was used, where regions of interest in video snippets were input to a convolutional neural network (deep neural network). RESULTS: Tic detection F1 scores (and accuracy) were 82.0% (88.4%) in the Random Forest and 79.5% (88.5%) in the deep neural network approach. CONCLUSIONS: ML algorithms for automatic tic detection based on video recordings are feasible and reliable and could thus become a valuable assessment tool, for example, for objective tic measurements in clinical trials. ML algorithms might also be useful for the differential diagnosis of tics. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Trastornos de Tic , Tics , Síndrome de Tourette , Humanos , Tics/diagnóstico , Síndrome de Tourette/diagnóstico , Reproducibilidad de los Resultados , Trastornos de Tic/diagnóstico , Aprendizaje Automático
20.
Front Physiol ; 14: 1146910, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37187961

RESUMEN

Objective: To develop and test a deep learning (DL) model to distinguish acetabular fractures (AFs) on pelvic anteroposterior radiographs (PARs) and compare its performance to that of clinicians. Materials and methods: A total of 1,120 patients from a big level-I trauma center were enrolled and allocated at a 3:1 ratio for the DL model's development and internal test. Another 86 patients from two independent hospitals were collected for external validation. A DL model for identifying AFs was constructed based on DenseNet. AFs were classified into types A, B, and C according to the three-column classification theory. Ten clinicians were recruited for AF detection. A potential misdiagnosed case (PMC) was defined based on clinicians' detection results. The detection performance of the clinicians and DL model were evaluated and compared. The detection performance of different subtypes using DL was assessed using the area under the receiver operating characteristic curve (AUC). Results: The means of 10 clinicians' sensitivity, specificity, and accuracy to identify AFs were 0.750/0.735, 0.909/0.909, and 0.829/0.822, in the internal test/external validation set, respectively. The sensitivity, specificity, and accuracy of the DL detection model were 0.926/0.872, 0.978/0.988, and 0.952/0.930, respectively. The DL model identified type A fractures with an AUC of 0.963 [95% confidence interval (CI): 0.927-0.985]/0.950 (95% CI: 0.867-0.989); type B fractures with an AUC of 0.991 (95% CI: 0.967-0.999)/0.989 (95% CI: 0.930-1.000); and type C fractures with an AUC of 1.000 (95% CI: 0.975-1.000)/1.000 (95% CI: 0.897-1.000) in the test/validation set. The DL model correctly recognized 56.5% (26/46) of PMCs. Conclusion: A DL model for distinguishing AFs on PARs is feasible. In this study, the DL model achieved a diagnostic performance comparable to or even superior to that of clinicians.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...