Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(15): 152503, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38682970

RESUMEN

The first complete measurement of the ß-decay strength distribution of _{17}^{45}Cl_{28} was performed at the Facility for Rare Isotope Beams (FRIB) with the FRIB Decay Station Initiator during the second FRIB experiment. The measurement involved the detection of neutrons and γ rays in two focal planes of the FRIB Decay Station Initiator in a single experiment for the first time. This enabled an analytical consistency in extracting the ß-decay strength distribution over the large range of excitation energies, including neutron unbound states. We observe a rapid increase in the ß-decay strength distribution above the neutron separation energy in _{18}^{45}Ar_{27}. This was interpreted to be caused by the transitioning of neutrons into protons excited across the Z=20 shell gap. The SDPF-MU interaction with reduced shell gap best reproduced the data. The measurement demonstrates a new approach that is sensitive to the proton shell gap in neutron rich nuclei according to SDPF-MU calculations.

2.
Phys Rev Lett ; 131(5): 052503, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37595241

RESUMEN

Potassium-40 is a widespread, naturally occurring isotope whose radioactivity impacts subatomic rare-event searches, nuclear structure theory, and estimated geological ages. A predicted electron-capture decay directly to the ground state of argon-40 has never been observed. The KDK (potassium decay) collaboration reports strong evidence of this rare decay mode. A blinded analysis reveals a nonzero ratio of intensities of ground-state electron-captures (I_{EC^{0}}) over excited-state ones (I_{EC^{*}}) of I_{EC^{0}}/I_{EC^{*}}=0.0095±[over stat]0.0022±[over sys]0.0010 (68% C.L.), with the null hypothesis rejected at 4σ. In terms of branching ratio, this signal yields I_{EC^{0}}=0.098%±[over stat]0.023%±[over sys]0.010%, roughly half of the commonly used prediction, with consequences for various fields [27L. Hariasz et al., companion paper, Phys. Rev. C 108, 014327 (2023)PRVCAN2469-998510.1103/PhysRevC.108.014327].

3.
Phys Rev Lett ; 131(2): 022501, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37505957

RESUMEN

The ß decays from both the ground state and a long-lived isomer of ^{133}In were studied at the ISOLDE Decay Station (IDS). With a hybrid detection system sensitive to ß, γ, and neutron spectroscopy, the comparative partial half-lives (logft) have been measured for all their dominant ß-decay channels for the first time, including a low-energy Gamow-Teller transition and several first-forbidden (FF) transitions. Uniquely for such a heavy neutron-rich nucleus, their ß decays selectively populate only a few isolated neutron unbound states in ^{133}Sn. Precise energy and branching-ratio measurements of those resonances allow us to benchmark ß-decay theories at an unprecedented level in this region of the nuclear chart. The results show good agreement with the newly developed large-scale shell model (LSSM) calculations. The experimental findings establish an archetype for the ß decay of neutron-rich nuclei southeast of ^{132}Sn and will serve as a guide for future theoretical development aiming to describe accurately the key ß decays in the rapid-neutron capture (r-) process.

4.
Phys Rev Lett ; 130(24): 242501, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37390416

RESUMEN

Excited-state spectroscopy from the first experiment at the Facility for Rare Isotope Beams (FRIB) is reported. A 24(2)-µs isomer was observed with the FRIB Decay Station initiator (FDSi) through a cascade of 224- and 401-keV γ rays in coincidence with ^{32}Na nuclei. This is the only known microsecond isomer (1 µs≤T_{1/2}<1 ms) in the region. This nucleus is at the heart of the N=20 island of shape inversion and is at the crossroads of the spherical shell-model, deformed shell-model, and ab initio theories. It can be represented as the coupling of a proton hole and neutron particle to ^{32}Mg, ^{32}Mg+π^{-1}+ν^{+1}. This odd-odd coupling and isomer formation provides a sensitive measure of the underlying shape degrees of freedom of ^{32}Mg, where the onset of spherical-to-deformed shape inversion begins with a low-lying deformed 2^{+} state at 885 keV and a low-lying shape-coexisting 0_{2}^{+} state at 1058 keV. We suggest two possible explanations for the 625-keV isomer in ^{32}Na: a 6^{-} spherical shape isomer that decays by E2 or a 0^{+} deformed spin isomer that decays by M2. The present results and calculations are most consistent with the latter, indicating that the low-lying states are dominated by deformation.


Asunto(s)
Núcleo Celular , Corazón , Isótopos , Neutrones
5.
Phys Rev Lett ; 129(21): 212501, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36461950

RESUMEN

New half-lives for exotic isotopes approaching the neutron drip-line in the vicinity of N∼28 for Z=12-15 were measured at the Facility for Rare Isotope Beams (FRIB) with the FRIB decay station initiator. The first experimental results are compared to the latest quasiparticle random phase approximation and shell-model calculations. Overall, the measured half-lives are consistent with the available theoretical descriptions and suggest a well-developed region of deformation below ^{48}Ca in the N=28 isotones. The erosion of the Z=14 subshell closure in Si is experimentally confirmed at N=28, and a reduction in the ^{38}Mg half-life is observed as compared with its isotopic neighbors, which does not seem to be predicted well based on the decay energy and deformation trends. This highlights the need for both additional data in this very exotic region, and for more advanced theoretical efforts.

6.
Phys Rev Lett ; 129(17): 172701, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36332266

RESUMEN

The ß-delayed one- and two-neutron emission probabilities (P_{1n} and P_{2n}) of 20 neutron-rich nuclei with N≥82 have been measured at the RIBF facility of the RIKEN Nishina Center. P_{1n} of ^{130,131}Ag, ^{133,134}Cd, ^{135,136}In, and ^{138,139}Sn were determined for the first time, and stringent upper limits were placed on P_{2n} for nearly all cases. ß-delayed two-neutron emission (ß2n) was unambiguously identified in ^{133}Cd and ^{135,136}In, and their P_{2n} were measured. Weak ß2n was also detected from ^{137,138}Sn. Our results highlight the effect of the N=82 and Z=50 shell closures on ß-delayed neutron emission probability and provide stringent benchmarks for newly developed macroscopic-microscopic and self-consistent global models with the inclusion of a statistical treatment of neutron and γ emission. The impact of our measurements on r-process nucleosynthesis was studied in a neutron star merger scenario. Our P_{1n} and P_{2n} have a direct impact on the odd-even staggering of the final abundance, improving the agreement between calculated and observed Solar System abundances. The odd isotope fraction of Ba in r-process-enhanced (r-II) stars is also better reproduced using our new data.

8.
Phys Rev Lett ; 119(5): 052503, 2017 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-28949741

RESUMEN

We report the results of a ß-decay study of fission products ^{86}Br, ^{89}Kr, ^{89}Rb, ^{90gs}Rb, ^{90m}Rb, ^{90}Kr, ^{92}Rb, ^{139}Xe, and ^{142}Cs performed with the Modular Total Absorption Spectrometer (MTAS) and on-line mass-separated ion beams. These radioactivities were assessed by the Nuclear Energy Agency as having high priority for decay heat analysis during a nuclear fuel cycle. We observe a substantial increase in ß feeding to high excited states in all daughter isotopes in comparison to earlier data. This increases the average γ-ray energy emitted by the decay of fission fragments during the first 10 000 s after fission of ^{235}U and ^{239}Pu by approximately 2% and 1%, respectively, improving agreement between results of calculations and direct observations. New MTAS results reduce the reference reactor ν[over ¯]_{e} flux used to analyze reactor ν[over ¯]_{e} interaction with detector matter. The reduction determined by the ab initio method for the four nuclear fuel components, ^{235}U, ^{238}U, ^{239}Pu, and ^{241}Pu, amounts to 0.976, 0.986, 0.983, and 0.984, respectively.

9.
Phys Rev Lett ; 117(9): 092501, 2016 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-27610847

RESUMEN

We report total absorption spectroscopy measurements of ^{92}Rb, ^{96gs}Y, and ^{142}Cs ß decays, which are the most important contributors to the high energy ν[over ¯]_{e} spectral shape in nuclear reactors. These three ß decays contribute 43% of the ν[over ¯]_{e} flux near 5.5 MeV emitted by nuclear reactors. This ν[over ¯]_{e} energy is particularly interesting due to spectral features recently observed in several experiments including the Daya Bay, Double Chooz, and RENO Collaborations. Measurements were conducted at Oak Ridge National Laboratory by means of proton-induced fission of ^{238}U with on-line mass separation of fission fragments and the Modular Total Absorption Spectrometer. We observe a ß-decay pattern that is similar to recent measurements of ^{92}Rb, with a ground-state to ground-state ß feeding of 91(3)%. We verify the ^{96gs}Y ground-state to ground-state ß feeding of 95.5(20)%. Our measurements substantially modify the ß-decay feedings of ^{142}Cs, reducing the ß feeding to ^{142}Ba states below 2 MeV by 32% when compared with the latest evaluations. Our results increase the discrepancy between the observed and the expected reactor ν[over ¯]_{e} flux between 5 and 7 MeV, the maximum excess increases from ∼10% to ∼12%.

10.
Phys Rev Lett ; 117(9): 092502, 2016 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-27610848

RESUMEN

The ß-delayed neutron emission of ^{83,84}Ga isotopes was studied using the neutron time-of-flight technique. The measured neutron energy spectra showed emission from states at excitation energies high above the neutron separation energy and previously not observed in the ß decay of midmass nuclei. The large decay strength deduced from the observed intense neutron emission is a signature of Gamow-Teller transformation. This observation was interpreted as evidence for allowed ß decay to ^{78}Ni core-excited states in ^{83,84}Ge favored by shell effects. We developed shell model calculations in the proton fpg_{9/2} and neutron extended fpg_{9/2}+d_{5/2} valence space using realistic interactions that were used to understand measured ß-decay lifetimes. We conclude that enhanced, concentrated ß-decay strength for neutron-unbound states may be common for very neutron-rich nuclei. This leads to intense ß-delayed high-energy neutron and strong multineutron emission probabilities that in turn affect astrophysical nucleosynthesis models.

11.
Phys Rev Lett ; 116(12): 122502, 2016 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-27058074

RESUMEN

The lifetimes of the first excited 2^{+} and 4^{+} states in ^{72}Ni were measured at the National Superconducting Cyclotron Laboratory with the recoil-distance Doppler-shift method, a model-independent probe to obtain the reduced transition probability. Excited states in ^{72}Ni were populated by the one-proton knockout reaction of an intermediate energy ^{73}Cu beam. γ-ray-recoil coincidences were detected with the γ-ray tracking array GRETINA and the S800 spectrograph. Our results provide evidence of enhanced transition probability B(E2;2^{+}→0^{+}) as compared to ^{68}Ni, but do not confirm the trend of large B(E2) values reported in the neighboring isotope ^{70}Ni obtained from Coulomb excitation measurement. The results are compared to shell model calculations. The lifetime obtained for the excited 4_{1}^{+} state is consistent with models showing decay of a seniority ν=4, 4^{+} state, which is consistent with the disappearance of the 8^{+} isomer in ^{72}Ni.

12.
Phys Rev Lett ; 111(13): 132502, 2013 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-24116772

RESUMEN

Beta decay of 86Ga was studied by means of ß-neutron-γ spectroscopy. An isotopically pure ^{86}Ga beam was produced at the Holifield Radioactive Ion Beam Facility using a resonance ionization laser ion source and high-resolution electromagnetic separation. The decay of 86Ga revealed a half-life of 43(-15)(+21) ms and large ß-delayed one-neutron and two-neutron branching ratios of P1n=60(10)% and P2n=20(10)%. The ßγ decay of 86Ga populated a 527 keV transition that is interpreted as the deexcitation of the first 2+ state in the N=54 isotone 86Ge and suggests a quick onset of deformation in Ge isotopes beyond N=50.

13.
Phys Rev Lett ; 109(16): 162501, 2012 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-23215070

RESUMEN

Two years after the discovery of element 117, we undertook a second campaign using the (249)Bk+(48)Ca reaction for further investigations of the production and decay properties of the isotopes of element 117 on a larger number of events. The experiments were started in the end of April 2012 and are still under way. This Letter presents the results obtained in 1200 hours of an experimental run with the beam dose of (48)Ca of about 1.5×10(19) particles. The (249)Bk target was irradiated at two energies of (48)Ca that correspond to the maximum probability of the reaction channels with evaporation of three and four neutrons from the excited (297)117. In this experiment, two decay chains of (294)117 (3n) and five decay chains of (293)117 (4n) were detected. In the course of the long-term work, (249)Cf-the product of decay of (249)Bk (330 d)-is being accumulated in the target. Consequently, in the present experiment, we also detected a single decay of the known isotope (294)118 that was produced during 2002-2005 in the reaction (249)Cf((48)Ca,3n)(294)118. The obtained results are compared with the data from previous experiments. The experiments are carried out in the Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, using the heavy-ion cyclotron U400.

14.
Phys Rev Lett ; 109(11): 112501, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-23005622

RESUMEN

The ß decays of neutron-rich nuclei near the doubly magic (78)Ni were studied at the Holifield Radioactive Ion Beam Facility using an electromagnetic isobar separator. The half-lives of (82)Zn (228±10 ms), (83)Zn (117±20 ms), and (85)Ga (93±7 ms) were determined for the first time. These half-lives were found to be very different from the predictions of the global model used in astrophysical simulations. A new calculation was developed using the density functional model, which properly reproduced the new experimental values. The robustness of the new model in the (78)Ni region allowed us to extrapolate data for more neutron-rich isotopes. The revised analysis of the rapid neutron capture process in low entropy environments with our new set of measured and calculated half-lives shows a significant redistribution of predicted isobaric abundances strengthening the yield of A>140 nuclei.

15.
Phys Rev Lett ; 105(16): 162502, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21230967

RESUMEN

By studying the (109)Xe→(105)Te→(101)Sn superallowed α-decay chain, we observe low-lying states in (101)Sn, the one-neutron system outside doubly magic (100)Sn. We find that the spins of the ground state (J=7/2) and first excited state (J=5/2) in (101)Sn are reversed with respect to the traditional level ordering postulated for (103)Sn and the heavier tin isotopes. Through simple arguments and state-of-the-art shell-model calculations we explain this unexpected switch in terms of a transition from the single-particle regime to the collective mode in which orbital-dependent pairing correlations dominate.

16.
Phys Rev Lett ; 102(14): 142502, 2009 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-19392431

RESUMEN

The beta-delayed neutron branching ratios (P{betan}) for nuclei near doubly magic 78Ni have been directly measured using a new method combining high-resolution mass separation, reacceleration, and digital beta-gamma spectroscopy of 238U fission products. The P{betan} values for the very neutron-rich isotopes ;{76-78}Cu and 83Ga were found to be much higher than previously reported and predicted. Revised calculations of the betan process, accounting for new mass measurements and an inversion of the pi2p{3/2} and pi1f{5/2} orbitals, are in better agreement with these new experimental results.

17.
Phys Rev Lett ; 98(21): 212501, 2007 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-17677769

RESUMEN

An alpha-decay branch of (1.4+/-0.4) x 10(-4) has been discovered in the decay of 109I, which predominantly decays via proton emission. The measured Q(alpha) value of 3918+/-21 keV allows the indirect determination of the Q value for proton emission from 105Sb of 356+/-22 keV, which is approximately of 130 keV more bound than previously reported. This result is relevant for the astrophysical rapid proton-capture process, which would terminate in the 105Sn(p,gamma)106Sb(p,gamma)107Te(alpha decay)103Sn cycle at the densities expected in explosive hydrogen burning scenarios, unless unusually strong pairing effects result in a 103Sn(p,gamma)104Sb(p,gamma)105Te(alpha decay)101Sn) cycle.

18.
Phys Rev Lett ; 99(19): 192501, 2007 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-18233071

RESUMEN

The decay of extremely neutron-deficient 45Fe has been studied in detail by means of a novel type of a gaseous detector employing digital imaging to record tracks of charged particles. The two-proton radioactivity channel was clearly identified. For the first time, the angular and energy correlations between two protons emitted from the nuclear ground state were determined, indicating the genuine three-body character of this decay. The half-life of 45Fe was found to be 2.6+/-0.2 ms and the observed 2p decay branching ratio is 70+/-4%.

19.
Phys Rev Lett ; 97(8): 082501, 2006 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-17026296

RESUMEN

Two new alpha emitters 109Xe and 105Te were identified through the observation of the 109Xe --> 105Te --> 101Sn alpha-decay chain. The 109Xe nuclei were produced in the fusion-evaporation reaction 54Fe(58Ni,3n)109Xe and studied using the Recoil Mass Spectrometer at the Holifield Radioactive Ion Beam Facility. Two transitions at Ealpha = 4062 +/- 7 keV and Ealpha = 3918 +/- 9 keV were interpreted as the l = 2 and l = 0 transitions from the 7/2+ ground state in 109Xe (T1/2 = 13 +/- 2 ms) to the 5/2+ ground state and a 7/2+ excited state, located at 150 +/- 13 keV in 105Te. The observation of the subsequent decay of 105Te marks the discovery of the lightest known alpha-decaying nucleus. The measured transition energy Ealpha = 4703 +/- 5 keV and half-life T1/2 = 620 +/- 70 ns were used to determine the reduced alpha-decay width delta2. The ratio delta105Te(2)/delta213Po(2) of approximately 3 indicates a superallowed character of the alpha emission from 105Te.

20.
J Res Natl Inst Stand Technol ; 110(4): 389-93, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-27308155

RESUMEN

We are developing an experiment to measure the correlations a, A, and B, and the Fierz interference term b in neutron decay, with a precision of approximately 10(-4). The experiment uses an electromagnetic spectrometer in combination with two large-area segmented silicon detectors to detect the proton and electron from the decay in coincidence, with 4π acceptance for both particles. For the neutron-polarization-dependent observables A and B, precision neutron polarimetry is achieved through the combination of a pulsed neutron beam, under construction at the SNS, and a polarized (3)He neutron polarizer. Measuring a and A in the same apparatus provides a redundant determination of λ = gA/gV . Uncertainty in λ dominates the uncertainty of CKM unitarity tests.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...