Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Faraday Discuss ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770842

RESUMEN

Studying larger nucleophiles in bimolecular nucleophilic substitution (SN2) reactions bridges the gap from simple model systems to those relevant to organic chemistry. Therefore, we investigated the reaction dynamics between the methoxy anion (CH3O-) and iodomethane (CH3I) in our crossed-beam setup combined with velocity map imaging at the four collision energies 0.4, 0.7, 1.2, and 1.6 eV. We find the two ionic products I- and CH2I-, which can be attributed to the SN2 and proton transfer channels, respectively. The proton transfer channel progresses in a previously observed fashion from indirect to direct scattering with increasing collision energy. Interestingly, the SN2 channel exhibits direct dynamics already at low collision energies. Both the direct stripping, leading to forward scattering, and the direct rebound mechanism, leading to backward scattering into high angles, are observed.

2.
J Phys Chem A ; 128(16): 3078-3085, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38597714

RESUMEN

While neutral reactions involved in methane oxidation have been intensively studied, much less information is known about the reaction dynamics of the oxygen radical anion with methane. Here, we study the scattering dynamics of this anion-molecule reaction using crossed-beam velocity map imaging with deuterated methane. Differential scattering cross sections for the deuterium abstraction channel have been determined at relative collision energies between 0.2 and 1.5 eV and ab initio calculations of the important stationary points along the reaction pathway have been performed. At lower collision energies, direct backscattering and indirect complex-mediated reaction dynamics are observed, whereas at higher energies, sideways deuterium stripping dominates the reaction. Above 0.7 eV collision energy, a suppressed cross section is observed at low product ion velocities, which is likely caused by the endoergic pathway of combined deuteron/deuterium transfer, forming heavy water. The measured product internal energy is attributed mainly to the low-lying deformation and out-of-plane bending vibrations of the methyl radical product. The results are compared with a previous crossed-beam result for the reaction of oxygen anions with nondeuterated ̧methane and with the related neutral-neutral reactions, showing similar dynamics and qualitative agreement.

3.
Phys Chem Chem Phys ; 25(28): 18711-18719, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37409391

RESUMEN

The competition between the bimolecular nucleophilic substitution (SN2) and base-induced elimination (E2) reaction and their intrinsic reactivity is of key interest in organic chemistry. To investigate the effect of suppressing the E2 pathway on SN2 reactivity, we compared the reactions F- + CH3CH2I and F- + CF3CH2I. Differential cross-sections have been measured in a crossed-beam setup combined with velocity map imaging, giving insight into the underlying mechanisms of the individual pathways. Additionally, we employed a selected-ion flow tube to obtain reaction rates and high-level ab initio computations to characterize the different reaction pathways and product channels. The fluorination of the ß-carbon not only suppresses the E2-reaction but opens up additional channels involving the abstraction of fluorine. The overall SN2 reactivity is reduced compared to the non-fluorinated iodoethane. This reduction is presumably due to the competition with the highly reactive channels forming FHF- and CF2CI-.

4.
J Phys Chem A ; 127(26): 5565-5571, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37354118

RESUMEN

We report on the reactive scattering of methyl iodide, CH3I, with atomic oxygen anions O-. This radical ion-molecule reaction can produce different ionic products depending on the angle of attack of the nucleophile O- on the target molecule. We present results on the backside and frontside attack of O- on CH3I, which can lead to I- and IO- products, respectively. We combine crossed-beam velocity map imaging with quantum chemical calculations to unravel the chemical reaction dynamics. Energy-dependent scattering experiments in the range of 0.3-2.0 eV relative collision energy revealed that three different reaction pathways can lead to I- products, making it the predominant observed product. Backside attack occurs via a hydrogen-bonded complex with observed indirect, forward, and sideways scattered iodide products. Halide abstraction via frontside attack produces IO-, which mainly shows isotropic and backward scattered products at low energies. IO- is observed to dissociate further to I- + O at a certain energy threshold and favors more direct dynamics at higher collision energies.

5.
J Phys Chem A ; 127(26): 5580-5590, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37352233

RESUMEN

We demonstrate a proof-of-concept of a new analytical technique to measure relative F atom exposure at the surfaces of fluorinated materials. The method is based on reactive-atom scattering (RAS) of Al atoms, produced by pulsed laser ablation of solid Al at 532 nm. The properties of the incident ground-state Al were characterized by laser-induced fluorescence (LIF); at typical ablation fluences, the speed distribution is approximately Maxwellian at ∼45000 K, with a most-probable kinetic energy of 187 kJ mol-1 and a mean of 560 kJ mol-1 When these Al atoms impact the surfaces of perfluorinated solids (poly(tetrafluorethylene), PTFE) or liquids (perfluoropolyether, PFPE), gas-phase AlF products are clearly detectable by LIF on the AlF A-X band. Quantitative AlF yields were compared for a small representative set of a widely studied family of ionic liquids based on the common 1-alkyl-3-methylimidazolium ([Cnmim]+) cation. Yields of (1.9 ± 0.2):1 were found from [C2mim][Tf2N] and [C8mim][Tf2N], containing the common fluorinated bis(trifluoromethylsulfonyl)imide anion ([Tf2N]-). This is in quantitative agreement with previous independent low-energy ion scattering (LEIS) measurements and consistent with other independent results indicating that the longer cationic alkyl chains cover a larger fraction of the liquid surface and hence reduce anion exposure. The expected null result was obtained for the ionic liquid [C2mim][EtSO4] which contains no fluorine. These results open the way for further characterization and the potential application of this new variant of the RAS-LIF method.

6.
Chemphyschem ; 24(15): e202300262, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37199236

RESUMEN

We present infrared predissociation spectra of C2 N- (H2 ) and C 3 N- (H2 ) in the 300-1850 cm-1 range. Measurements were performed using the FELion cryogenic ion trap end user station at the Free Electron Lasers for Infrared eXperiments (FELIX) laboratory. For C2 N- (H2 ), we detected the CCN bending and CC-N stretching vibrations. For the C3 N- (H2 ) system, we detected the CCN bending, the CC-CN stretching, and multiple overtones and/or combination bands. The assignment and interpretation of the presented experimental spectra is validated by calculations of anharmonic spectra within the vibrational configuration interaction (VCI) approach, based on potential energy surfaces calculated at explicitly correlated coupled cluster theory (CCSD(T)-F12/cc-pVTZ-F12). The H2 tag acts as an innocent spectator, not significantly affecting the C2,3 N- bending and stretching mode positions. The recorded infrared predissociation spectra can thus be used as a proxy for the vibrational spectra of the bare anions.

7.
J Phys Chem A ; 126(50): 9408-9413, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36512691

RESUMEN

We report on reactive scattering studies of the proton transfer and combined hydrogen/proton transfer in the O- + CH3I reaction. We combine state-of-the-art crossed-beam velocity map imaging and quantum chemistry calculations to understand the dynamics for the formations of the CH2I- + OH and CHI- + H2O products. The experimental velocity- and angle-differential cross section show for both products and at all collision energies (between 0.3 and 2.0 eV) that the product ions are predominantly forward scattered. For the CHI- + H2O channel, the data show lower product velocities, indicative of higher internal excitation, than in the case of single proton transfer. Furthermore, our results suggest that the combined hydrogen/proton transfer proceeds via a two-step process: In the first step, O- abstracts one H atom to form OH-, and then the transient OH- removes an additional proton from CH2I to form the energetically stable H2O coproduct.

8.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 5): 664-667, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32431929

RESUMEN

Single crystals of SrFe1.40V0.60O4, strontium tetra-oxidodi[ferrate(III)/vanad-ate(III)], have been obtained as a side product in the course of sinter experiments aimed at the synthesis of double perovskites in the system SrO-Fe2O3-V2O5. The crystal structure can be characterized by layers of six-membered rings of TO4-tetra-hedra (T: FeIII, VIII) perpendicular to [100]. Stacking of the layers along [100] results in a three-dimensional framework enclosing tunnel-like cavities in which SrII cations are incorporated for charge compensation. The sequence of directedness of up (U) and down (D) pointing vertices of neighboring tetra-hedra in a single six-membered ring is UUUDDD. The topology of the tetra-hedral framework belongs to the zeolite-type ABW.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...