Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Plant Cell ; 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581430

RESUMEN

Lateral branches are important components of shoot architecture and directly affect crop yield and production cost. Although sporadic studies have implicated abscisic acid (ABA) biosynthesis in axillary bud outgrowth, the function of ABA catabolism and its upstream regulators in shoot branching remain elusive. Here, we showed that the MADS-box transcription factor AGAMOUS-LIKE 16 (CsAGL16) is a positive regulator of axillary bud outgrowth in cucumber (Cucumis sativus). Functional disruption of CsAGL16 led to reduced bud outgrowth, whereas overexpression of CsAGL16 resulted in enhanced branching. CsAGL16 directly binds to the promoter of the ABA 8'-hydroxylase gene CsCYP707A4 and promotes its expression. Loss of CsCYP707A4 function inhibited axillary bud outgrowth and increased ABA levels. Elevated expression of CsCYP707A4 or treatment with an ABA biosynthesis inhibitor largely rescued the Csagl16 mutant phenotype. Moreover, cucumber General Regulatory Factor 1 (CsGRF1) interacts with CsAGL16 and antagonizes CsAGL16-mediated CsCYP707A4 activation. Disruption of CsGRF1 resulted in elongated branches and decreased ABA levels in the axillary buds. The Csagl16 Csgrf1 double mutant exhibited a branching phenotype resembling that of the Csagl16 single mutant. Therefore, our data suggest that the CsAGL16-CsGRF1 module regulates axillary bud outgrowth via CsCYP707A4-mediated ABA catabolism in cucumber. Our findings provide a strategy to manipulate ABA levels in axillary buds during crop breeding to produce desirable branching phenotypes.

2.
Plant Biotechnol J ; 22(2): 347-362, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37795910

RESUMEN

Plant defence against pathogens generally occurs at the expense of growth and yield. Uncoupling the inverse relationship between growth and defence is of great importance for crop breeding, while the underlying genes and regulatory mechanisms remain largely elusive. The exocytosis complex was shown to play an important role in the trafficking of receptor kinases (RKs) to the plasma membrane (PM). Here, we found a Cucumis sativus exocytosis subunit Exo70B (CsExo70B) regulates the abundance of both development and defence RKs at the PM to promote fruit elongation and disease resistance in cucumber. Knockout of CsExo70B resulted in shorter fruit and susceptibility to pathogens. Mechanistically, CsExo70B associates with the developmental RK CsERECTA, which promotes fruit longitudinal growth in cucumber, and contributes to its accumulation at the PM. On the other side, CsExo70B confers to the spectrum resistance to pathogens in cucumber via a similar regulatory module of defence RKs. Moreover, CsExo70B overexpression lines showed an increased fruit yield as well as disease resistance. Collectively, our work reveals a regulatory mechanism that CsExo70B promotes both fruit elongation and disease resistance by maintaining appropriate RK levels at the PM and thus provides a possible strategy for superior cucumber breeding with high yield and robust pathogen resistance.


Asunto(s)
Cucumis sativus , Cucumis sativus/genética , Frutas/metabolismo , Resistencia a la Enfermedad/genética , Fitomejoramiento , Membrana Celular
3.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37446106

RESUMEN

Cucumber (Cucumis sativus L.) is an important vegetable worldwide, but its yield is affected by a wide range of pathogens and pests. As the major subunit of the exocyst complex, the roles of Exo70 members have been shown in Arabidopsis and rice, but their function are unknown in cucumber. Here, we identified 18 CsExo70 members in cucumber, which were divided into three groups (Exo70.1-Exo70.3) and nine subgroups (Exo70A-Exo70I) based on the phylogenetic tree. Subsequently, systematical analyses were performed, including collinearity, gene structure, cis-acting elements, conserved motifs, expression patterns, and subcellular localization. Our results showed that CsExo70 genes were generally expressed in all tissues, and CsExo70C1 and CsExo70C2 were highly expressed in the stamen. Moreover, the expression levels of most CsExo70 genes were induced by Pseudomonas syringae pv. lachrymans (Psl) and Fusarium oxysporum f. sp. cucumerinum Owen (Foc), especially CsExo70E2 and CsExo70H3. In addition, these CsExo70s displayed similar location patterns with discrete and punctate signals in the cytoplasm. Together, our results indicate that CsExo70 members may be involved in plant development and resistance, and provide a reference for future in-depth studies of Exo70 genes in cucumber.


Asunto(s)
Cucumis sativus , Cucumis sativus/genética , Filogenia , Secuencias Reguladoras de Ácidos Nucleicos , Citoplasma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...