Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Proteomics ; 274: 104808, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36596410

RESUMEN

Proteins and translationally modified proteins like phosphoproteins have essential regulatory roles in tumorigenesis. This study attempts to elucidate the dysregulated proteins driving colorectal cancer (CRC). To explore the differential proteins, we performed iTRAQ labeling proteomics and TMT labeling phosphoproteomics analysis of CRC tissues and adjacent non-cancerous tissues. The functions of quantified proteins were analyzed using Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), and Subcellular localization analysis. Depending on the results, we identified 330 differential proteins and 82 phosphoproteins in CRC. GO and KEGG analyses demonstrated that protein changes were primarily associated with regulating biological and metabolic processes through binding to other molecules. Co-expression relationships between proteomic and phosphoproteomic analysis revealed that TMC5, SMC4, SLBP, VSIG2, and NDRG2 were significantly dysregulated differential proteins. Additionally, based on the predicted co-expression proteins, we identified that the stem-loop binding protein (SLBP) was up-regulated in CRC cells and promoted the proliferation and migration of CRC. This study reports an integrated proteomic and phosphoproteomic analysis of CRC to discern the functional impact of protein alterations and provides a candidate diagnostic biomarker or therapeutic target for CRC. SIGNIFICANCE: Combining one or more high-throughput omics technologies with bioinformatics to analyze biological samples and explore the links between biomolecules and their functions can provide more comprehensive and multi-level insights for disease mechanism research. Proteomics, phosphoproteomics, metabolomics and their combined analysis play an important role in the auxiliary diagnosis, the discovery of biomarkers and novel therapeutic targets for colorectal cancer. In this integrated proteomic and phosphoproteomic analysis, we identified proteins and phosphoproteins in colorectal cancer tissue and analyzed potential mechanisms contributing to progression in colorectal cancer. The results of this study provide a foundation to focus future experiments on the contribution of altered protein and phosphorylation patterns to prevention and treatment of colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/metabolismo , Proteómica/métodos , Metabolómica , Biología Computacional/métodos , Fosfoproteínas , Proteínas Supresoras de Tumor
2.
Exp Biol Med (Maywood) ; 248(3): 193-200, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36533576

RESUMEN

Liver diseases, including viral hepatitis, fatty liver, metabolic-associated fatty liver disease, liver cirrhosis, alcoholic liver disease, and liver neoplasms, are major global health challenges. Despite the continued development of new drugs and technologies, the prognosis of end-stage liver diseases, including advanced liver cirrhosis and liver neoplasms, remains poor. Follistatin-like protein 1 (FSTL1), an extracellular glycoprotein, is secreted by various cell types. It is a glycoprotein that belongs to the family of secreted proteins acidic and rich in cysteine (SPARC). It is also known as transforming growth factor-beta inducible TSC-36 and follistatin-related protein (FRP). FSTL1 plays a key role in cell survival, proliferation, differentiation, and migration, as well as the regulation of inflammation and immunity. Studies have demonstrated that FSTL1 significantly affects the occurrence and development of liver diseases. This article reviews the role and mechanism of FSLT1 in liver diseases.


Asunto(s)
Proteínas Relacionadas con la Folistatina , Cirrosis Hepática , Neoplasias Hepáticas , Humanos , Diferenciación Celular , Proteínas Relacionadas con la Folistatina/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
3.
Cell Death Differ ; 28(12): 3251-3269, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34131310

RESUMEN

Tumour metastasis is a major reason accounting for the poor prognosis of colorectal cancer (CRC), and the discovery of targets in the primary tumours that can predict the risk of CRC metastasis is now urgently needed. In this study, we identified autophagy-related protein 9B (ATG9B) as a key potential target gene for CRC metastasis. High expression of ATG9B in tumour significantly increased the risk of metastasis and poor prognosis of CRC. Mechanistically, we further find that ATG9B promoted CRC invasion mainly through autophagy-independent manner. MYH9 is the pivotal interacting protein for ATG9B functioning, which directly binds to cytoplasmic peptide segments aa368-411 of ATG9B by its head domain. Furthermore, the combination of ATG9B and MYH9 enhance the stability of each other by decreasing their binding to E3 ubiquitin ligase STUB1, therefore preventing them from ubiquitin-mediated degradation, which further amplified the effect of ATG9B and MYH9 in CRC cells. During CRC cell invasion, ATG9B is transported to the cell edge with the assistance of MYH9 and accelerates focal adhesion (FA) assembly through mediating the interaction of endocytosed integrin ß1 and Talin-1, which facilitated to integrin ß1 activation. Clinically, upregulated expression of ATG9B in human CRC tissue is always accompanied with highly elevated expression of MYH9 and associated with advanced CRC stage and poor prognosis. Taken together, this study highlighted the important role of ATG9B in CRC metastasis by promoting focal adhesion assembly, and ATG9B together with MYH9 can provide a pair of potential therapeutic targets for preventing CRC progression.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Neoplasias Colorrectales/genética , Adhesiones Focales/metabolismo , Proteínas de la Membrana/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Animales , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Femenino , Humanos , Ratones , Metástasis de la Neoplasia , Pronóstico , Análisis de Supervivencia
4.
Oncogenesis ; 8(8): 43, 2019 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-31409774

RESUMEN

Hepatocellular carcinoma (HCC) is a leading cause of tumour-associated mortality worldwide, but no significant improvement in treating HCC has been reported with currently available systemic therapies. Immunotherapy represents a new frontier in tumour therapy. Therefore, the immunobiology of hepatocarcinoma has been under intensive investigation. Decoy receptor 3 (DcR3), a member of the tumour necrosis factor receptor (TNFR) superfamily, is an immune suppressor associated with tumourigenesis and cancer metastasis. However, little is known about the role of DcR3 in the immunobiology of hepatocarcinoma. In this study, we found that overexpression of DcR3 in HCC is mediated by the TGFß3-Smad-Sp1 signalling pathway, which directly targets DcR3 promoter regions. Moreover, overexpression of DcR3 in HCC tissues is associated with tumour invasion and metastasis and significantly promotes the differentiation and secretion of Th2 and Treg cells while inhibiting the differentiation and secretion of Th1 cells. Conversely, knockdown of DcR3 expression in HCC significantly restored the immunity of CD4+ T cells. Inhibition of DcR3 expression may provide a novel immunotherapeutic approach to restoring immunity in HCC patients.

5.
Cancer Biol Ther ; 20(7): 967-978, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30894065

RESUMEN

Nontumour cells in the tumour microenvironment, especially fibroblasts, contribute to tumour progression and metastasis. The occurrence and evolution of colorectal cancer (CRC) is closely related to cancer-associated fibroblasts (CAFs). The aim of this work was to evaluate the effects of the growth factors and cytokines secreted by CAFs on CRC progression. The secreted cytokines were examined in CAFs by Human Cytokine Antibody array. We screened 37 differentially secreted cytokines in the culture supernatants of CAFs and NFs. CLEC3B, attractin, kallikrein 5 and legumain were selected for further verification. CLEC3B was more highly expressed in the stroma of CRC tissues than the other 3 cytokines. Immunohistochemistry revealed that CLEC3B expression was associated with serosal invasion by CRC. Patients with co-expression of CLEC3B and α-SMA had worse survival outcomes than those with only CLEC3B or α-SMA expression. CLEC3B secreted from CAFs may promote tumour migration. Knockdown of endogenous CLEC3B in CAFs markedly decreased CRC cell migration, while recombinant human CLEC3B clearly promoted CRC cell migration and actin remodelling. In conclusion, our findings suggest that CAFs promote the CRC cell migration and skeletal reorganization by secreting CLEC3B. CLEC3B might be a potential therapeutic molecule for CRC treatment.


Asunto(s)
Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Lectinas Tipo C/biosíntesis , Actinas/metabolismo , Adulto , Anciano , Biomarcadores , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/genética , Progresión de la Enfermedad , Femenino , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Estadificación de Neoplasias , Microambiente Tumoral/genética
6.
Cell Death Dis ; 9(6): 654, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29844309

RESUMEN

Follistatin-like protein 1 (FSTL1) has been reported to have both tumour-promoting and tumour-suppressive characters. However, the role of FSTL1 in colorectal cancer (CRC) remains unclear. Here we showed that FSTL1 expression was significantly up-regulated in CRC tissues compared with the paired normal tissues. In addition, the higher FSTL1 expression was associated with the infiltrating depth, lymph node metastasis and poor prognosis of CRC. Enhanced expression of FSTL1 distinctly increased cell migration and invasion in vitro, as well as promoting liver metastasis of CRC in vivo. Conversely, knockdown of FSTL1 expression significantly repressed invasion and metastasis of CRC. Mechanically, transcription factor Smad3 was involved in FSTL1 protein expression inducing by TGFß1-Smad2/3 signalling. Furthermore, this effect of FSTL1 in promoting CRC progression was actualised via activating focal adhesions signalling pathway and regulating cytoskeleton rearrangement. We identified VIM, as an interactive protein of FSTL1, participated in FSTL1-mediated aggressive phenotype. We showed the role of FSTL1 in CRC and explored its transcription regulation and downstream signalling molecular mechanisms. In conclusion, our findings suggested that FSTL1 promoted CRC progression and metastasis, making it a novel target for diagnosis and prognostic evaluation of CRC.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Adhesiones Focales/metabolismo , Proteínas Relacionadas con la Folistatina/metabolismo , Transducción de Señal , Vimentina/metabolismo , Animales , Secuencia de Bases , Línea Celular Tumoral , Movimiento Celular , Citoesqueleto/metabolismo , Femenino , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Invasividad Neoplásica , Metástasis de la Neoplasia , Pronóstico , Unión Proteica , Proteína smad3/metabolismo
7.
Sci Rep ; 7: 46078, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28470188

RESUMEN

Response gene to complement 32 (RGC32) is a transcription factor that regulates the expression of multiple genes involved in cell growth, viability and tissue-specific differentiation. However, the role of RGC32 in tumorigenesis and tumor progression in colorectal cancer (CRC) has not been fully elucidated. Here, we showed that the expression of RGC32 was significantly up-regulated in human CRC tissues versus adjacent normal tissues. RGC32 expression was significantly correlated with invasive and aggressive characteristics of tumor cells, as well as poor survival of CRC patients. We also demonstrated that RGC32 overexpression promoted proliferation, migration and tumorigenic growth of human CRC cells in vitro and in vivo. Functionally, RGC32 facilitated epithelial-mesenchymal transition (EMT) in CRC via the Smad/Sip1 signaling pathway, as shown by decreasing E-cadherin expression and increasing vimentin expression. In conclusion, our findings suggested that overexpression of RGC32 facilitates EMT of CRC cells by activating Smad/Sip1 signaling.


Asunto(s)
Proteínas de Ciclo Celular/genética , Neoplasias Colorrectales/genética , Transición Epitelial-Mesenquimal , Proteínas Musculares/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Proteínas Smad/metabolismo , Animales , Biomarcadores de Tumor/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Neoplasias Colorrectales/patología , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Proteínas Musculares/metabolismo , Invasividad Neoplásica , Fenotipo , Análisis de Supervivencia , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...