Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Curr Med Chem ; 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38310397

RESUMEN

BACKGROUND: Tofacitinib is an oral JAK inhibitor for the treatment of rheumatoid arthritis (RA). The clinical efficacy and safety of an administered tofacitinib, either monotherapy or in combination with conventional synthetic disease-modifying anti-rheumatic drugs, mainly methotrexate (MTX), have been evaluated. The high plasma concentration with delayed medicine clearance may affect the liver and/or kidney functions. In this study, an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC- MS/MS) method for the quantitative analysis of methotrexate, tofacitinib, and metabolite M9 in plasma of Sprague Dawley (SD) rats was developed, and its effectiveness was validated as well. METHODS: Methotrexate, tofacitinib, M9 and fedratinib (internal standard, IS) were separated by gradient elution. The chromatography was performed on an Acquity BEH C18 (2.1 mm × 50 mm, 1.7 µm) column with the mobile phases of acetonitrile and 0.1% formic acid aqueous solution with different proportions at the flow rate of 0.30 mL/min. In the positive ionization mode, the analyzes were detected using a Xevo TQ-S triple quadrupole tandem mass spectrometer, with the following mass transition pairs: m/z 313.12 → 148.97 for tofacitinib, m/z 329.10 → 165.00 for M9 and m/z 455.12 → 308.05 for methotrexate. RESULTS: The obtained results manifested good calibration linearity over the ranges of tofacitinib at 0.1-100 ng/mL, M9 at 0.05-100 ng/mL, and methotrexate at 0.05-100 ng/mL. The lower limit of quantifications (LLOQs) of methotrexate, tofacitinib and M9 were 0.05 ng/mL, 0.1 ng/mL and 0.05 ng/mL, respectively. Intra-day and inter-day accuracy values were confirmed with a range of -6.3% to 12.7%, while intra-day and inter-- day precision values were ≤14.4%. Additionally, recoveries were greater than 86.5% for each compound without significant matrix effects. CONCLUSION: The currently established analytical method exhibited great potential for the evaluation of plasma concentrations of methotrexate, tofacitinib and M9 simultaneously, greatly reducing the detection time, which would serve as a supplementary role in formulating dose decisions to achieve personalized treatment, identify drugs that cause adverse reactions and finally, to assess drug-drug interactions on clinical studies.

3.
Front Pharmacol ; 13: 955263, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36160432

RESUMEN

As multi-targeted tyrosine kinase inhibitors, sorafenib, regorafenib and cabozantinib are widely used in hepatocellular carcinoma (HCC) for systemic therapies with anti-proliferative and anti-angiogenic effects. Nevertheless, adverse effects or insufficient efficacy appear frequently due to the plasma concentration with individual variability of these drugs. To ensure the curative effect and safety by therapeutic drug monitoring (TDM), this study developed a high throughput method to quantify sorafenib, regorafenib, cabozantinib and their active metabolites in plasma simultaneously. The chromatographic separation analysis achievement was performed on a Waters-ACQUITY UPLC BEH C18 column by UPLC-MS/MS system using a gradient elution of solvent A (acetonitrile) and solvent B (water with 0.1% formic acid) in 3.0 min. This method presented satisfactory results of specificity, precision (the intra-day coefficient of variation was between 2.5% and 6.6%, and the inter-day coefficient of variation was between 4.0% and 11.1%) and accuracy (within ±15% for intra-day and inter-day), as well as the stability under certain conditions, the matrix effect in plasma, and extraction recovery (75.6%-94.4%). The linearity of each analyte in the proper concentration scope indicated excellent. This study strictly complied with the performance rules of assay validation in biological medium proposed by FDA and was successfully applied to the pharmacokinetic study in rats. Thus, it would be an advantageous option to research the relationship between concentration-efficacy and concentration-toxic in HCC patients who were supposed to take these medications.

4.
Pharm Biol ; 60(1): 1-8, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34860644

RESUMEN

CONTEXT: As an inhibitor cytochrome P450 family 2 subfamily C polypeptide 8 (CYP2C8), quercetin is a naturally occurring flavonoid with its glycosides consumed at least 100 mg per day in food. However, it is still unknown whether quercetin and selexipag interact. OBJECTIVE: The study investigated the effect of quercetin on the pharmacokinetics of selexipag and ACT-333679 in beagles. MATERIALS AND METHODS: The ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to investigate the pharmacokinetics of orally administered selexipag (2 mg/kg) with and without quercetin (2 mg/kg/day for 7 days) pre-treatment in beagles. The effect of quercetin on the pharmacokinetics of selexipag and its potential mechanism was studied through the pharmacokinetic parameters. RESULTS: The assay method was validated for selexipag and ACT-333679, and the lower limit of quantification for both was 1 ng/mL. The recovery and the matrix effect of selexipag were 84.5-91.58% and 94.98-99.67%, while for ACT-333679 were 81.21-93.90% and 93.17-99.23%. The UPLC-MS/MS method was sensitive, accurate and precise, and had been applied to the herb-drug interaction study of quercetin with selexipag and ACT-333679. Treatment with quercetin led to an increased in Cmax and AUC0-t of selexipag by about 43.08% and 26.92%, respectively. While the ACT-333679 was about 11.11% and 18.87%, respectively. DISCUSSION AND CONCLUSION: The study indicated that quercetin could inhibit the metabolism of selexipag and ACT-333679 when co-administration. Therefore, the clinical dose of selexipag should be used with caution when co-administered with foods high in quercetin.


Asunto(s)
Acetamidas/farmacocinética , Acetatos/farmacocinética , Inhibidores del Citocromo P-450 CYP2C8/farmacología , Pirazinas/farmacocinética , Quercetina/farmacología , Animales , Antihipertensivos/farmacocinética , Área Bajo la Curva , Cromatografía Líquida de Alta Presión , Perros , Femenino , Interacciones de Hierba-Droga , Masculino , Espectrometría de Masas en Tándem
5.
Front Pharmacol ; 12: 641872, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093181

RESUMEN

The contribution of the metabolites of linezolid to the associated myelosuppression is unknown in patients who are renal impairment. In this research, the purpose of our experiment was to explore and develop a quick and robust ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) assay for the determination of linezolid and its metabolite PNU-142300 in human serum simultaneously. The analytes were prepared using a simple and convenient approach with acetonitrile for protein crash, and then separated from the matrix on a Waters Acquity Ultra performance liquid chromatography (UPLC) BEH C18 (2.1 mm × 50 mm, 1.7 µm) column in a program of gradient elution, where the mobile phase was consisted of water with 0.1% formic acid and acetonitrile, and was placed at 0.40 ml/min flow rate. Multiple reaction monitoring (MRM) was employed and conducted for UPLC-MS/MS detection with ion transitions at m/z 338.01 → 296.03 for linezolid, m/z 369.96 → 327.98 for PNU-142300 and m/z 370.98 → 342.99 for tedizolid (Internal standard, IS), respectively. This method had good linearity respectively in the calibration range of 0.01-20 µg/ml for linezolid, and 0.05-100 µg/ml for PNU-142300. In the intra- and inter-day, the precision of linezolid and PNU-142300 was below 14.2%, and the accuracy in this method was determined to be from -9.7 to 12.8%. In addition, recovery and matrix effect of the analytes were all found to be acceptable, and the analytes during the assay and storage in serum samples were observed to be stable. The novel optimized UPLC-MS/MS assay was also successfully employed to determine the concentration levels of linezolid and PNU-142300 in human serum. The results showed that linezolid-associated myelosuppression occurs more frequently in patients with renal insufficiency, and the metabolite-to-parent concentration ratio of PNU-142300 is predicted to reduce this toxicity of myelosuppression.

6.
Infect Drug Resist ; 11: 2129-2135, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30464555

RESUMEN

BACKGROUND: CYP/CYP450 2C19 (CYP2C19) is a highly polymorphic enzyme and exhibits individual differences in metabolic activity. The purpose of this research was mainly to explore the catalytic activities of 30 CYP2C19 variants on the substrate voriconazole in vitro, including 24 novel CYP2C19 variants (2C19.2E-.2H, .2J, .3C, .29-.33, L16F, 35FS, R124Q, R125G, T130M, N231T, M255T, R261W, N277K, S303N, I327T, N403I, and A430V) found in Chinese Han population for the first time. METHODS: These CYP2C19 variants were expressed in Spodoptera frugiperda (Sf) 21 insect cells using the baculovirus-mediated expression system. The substrate voriconazole was incubated with the abovementioned proteins at 37°C for 30 minutes in an appropriate designed system. Then through detecting its major metabolite voriconazole N-oxide by ultra-performance liquid chromatography tandem mass spectrometry, available data were obtained to explain the influence of CYP2C19 polymorphisms on voriconazole. RESULTS: From the results, when compared to CYP2C19.1, most variants exhibited either reduced Vmax and/or increased Km value, indicating that the intrinsic clearance (Vmax/Km ) values of most variants were significantly altered. The catalytic activities of 20 novel variants exhibited decreases in different degrees compared to CYP2C19.1, with relative clearance values ranging from 1.11% to 83.78%. However, L16F exhibited the increased catalytic activity for 135.68%. In addition, the kinetic parameters of four variants (2C19.2H, .3, 35FS, and R124Q) could not be detected, due to the defective gene. CONCLUSION: This is the first study to report the effects of CYP2C19 polymorphisms on vori-conazole metabolism in vitro, and we hope these data could lay the foundation for the early clinical research and individualized treatment.

7.
Pharmacology ; 98(3-4): 124-33, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27251229

RESUMEN

The objective of this study was to assess the catalytic activity of 22 novel CYP2D6 allelic variants (2D6*87-*98, R25Q, F164L, E215K, F219S, V327M, D336N, V342M, R344Q, R440C and R497C) to olanzapine in vitro. Their protein products expressed in Spodoptera frugiperda 21 (Sf21) insect cells were incubated with olanzapine 100-2,000 µmol/l for 30 min. The kinetic parameters of Km, Vmax and intrinsic clearance were determined by 2-hydroxymethylolanzapine, the metabolite of olanzapine mediated by CYP2D6, using ultra-performance liquid chromatography tandem mass spectrometry. Results showed that the kinetic parameters of 2 alleles, CYP2D6*92 and 2D6*96, could not be detected; 17 allelic variants, CYP2D6*87-*88, 2D6*90-*91, 2D6*93-*95, 2D6*97, R25Q, F164L, E215K, F219S, V327M, V342M, R344Q, R440C and R497C, significantly reduced the intrinsic clearance of olanzapine; 2 variants, CYP2D6*89 and 2D6*98, increased the intrinsic clearance of olanzapine; no difference was found in intrinsic clearance of D336N. Furthermore, 6 alleles, CYP2D6*87, 2D6*88, 2D6*91, 2D6*93, 2D6*97 and R497C, exhibited higher Km values in a range of 120.80-217.56% relative to wild-type CYP2D6*1. The research demonstrated the metabolic phenotype of the 22 novel CYP2D6 variants for olanzapine that were different from probe drugs we used previously and might provide beneficial information to the personalized medicine of olanzapine.


Asunto(s)
Antipsicóticos/metabolismo , Pueblo Asiatico/genética , Benzodiazepinas/metabolismo , Citocromo P-450 CYP2D6/genética , Variación Genética/genética , Vigilancia de la Población , Relación Dosis-Respuesta a Droga , Humanos , Olanzapina , Polimorfismo Genético/genética , Vigilancia de la Población/métodos
8.
Drug Des Devel Ther ; 10: 687-96, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26937172

RESUMEN

BACKGROUND: CYP2D6 is one of the most important members of the cytochrome P450 superfamily. Its genetic polymorphism significantly influences the efficacy and safety of some drugs, which might cause adverse effects and therapeutic failure. METHODS AND RESULTS: The aim of this research was mainly to explore the catalytic activities of 22 newly reported CYP2D6 isoforms (2D6*87, *88, *89, *90, *91, *92, *93, *94, *95, *96,*97, *98, *R25Q, F164L, E215K, F219S, V327M, D336N, V342M, R344Q, R440C, R497C) on dapoxetine in vitro. The research was designed with an appropriate incubation system in test tubes and carried out in the constant temperature water. Through detecting its two metabolites desmethyldapoxetine and dapoxetine-N-oxide, the available data were obtained to explain the influence of CYP2D6 polymorphism on the substrate drug dapoxetine. As a result, the intrinsic clearance (Vmax/Km) values of most variants were significantly altered when compared with the counterpart of CYP2D6*1, with most of these variants exhibiting either reduced Vmax and/or increased Km values. For dapoxetine demethylation pathway (which produces desmethyldapoxetine), 2D6*89 and E215K exhibited no markedly decreased relative clearance of 92.81% and 97.70%, respectively. The relative clearance of rest 20 variants exhibited decrease in different levels, ranging from 20.44% to 90.90%. For the dapoxetine oxidation pathway (which produces dapoxetine-N-oxide), the relative clearance values of three variants, 2D6*90, *94, and V342M, exhibited no markedly increased relative clearance of 106.17%, 107.78%, and 109.98%, respectively; the rest 19 variants exhibited significantly decreased levels ranging from 27.56% to 84.64%. In addition, the kinetic parameters of two CYP2D6 variants (2D6*92 and 2D6*96) could not be detected, due to the defect of the CYP2D6 gene. CONCLUSION: As the first report of all aforementioned alleles for dapoxetine metabolism, these data may help in the clinical assessment of the metabolic elimination of dapoxetine and may provide fundamental information for further clinical studies.


Asunto(s)
Pueblo Asiatico/genética , Bencilaminas/metabolismo , Citocromo P-450 CYP2D6/genética , Naftalenos/metabolismo , Polimorfismo Genético , Alelos , Humanos , Cinética
9.
Xenobiotica ; 46(5): 439-44, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26391142

RESUMEN

1. The objective of this study were to investigate the effect of orally administered resveratrol on the pharmacokinetics of aripiprazole (APZ) in rat, and the inhibitory effects of resveratrol on APZ dehydrogenation activity in liver microsomes and human cytochrome P450 3A4 and 2D6. 2. Twenty-five healthy male Sprague-Dawley rats were randomly divided into five groups: A (control group), B (multiple dose of 200 mg/kg resveratrol), C (multiple dose of 100 mg/kg resveratrol), D (a single dose of 200 mg/kg resveratrol) and E (a single dose of 100 mg/kg resveratrol). A single dose of 3 mg/kg APZ administered orally 30 min after administration of resveratrol. In addition, CYP2D6*1, CYP3A4*1, human and rat liver microsomes were performed to determine the effect of resveratrol on the metabolism of APZ in vitro. 3. The multiple dose of 200 or 100 mg/kg resveratrol significantly increased the AUC and Cmax of APZ. The resveratrol also obviously decreased the CL, but without any significant difference on t1/2 in vivo. On the other hand, resveratrol showed inhibitory effect on CYP3A4*1, CYP2D6*1, human and rat microsomes, the IC50 of resveratrol was 6.771, 87.87, 45.11 and 35.59 µmol l(-1), respectively. 4. Those results indicated more attention should be paid when APZ was administrated combined with resveratrol.


Asunto(s)
Aripiprazol/farmacocinética , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Interacciones Farmacológicas , Microsomas Hepáticos/efectos de los fármacos , Estilbenos/farmacocinética , Animales , Antipsicóticos/farmacocinética , Área Bajo la Curva , Cromatografía Liquida , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacocinética , Humanos , Concentración 50 Inhibidora , Masculino , Microsomas Hepáticos/metabolismo , Ratas , Ratas Sprague-Dawley , Resveratrol , Espectrometría de Masas en Tándem
10.
Pharmacology ; 96(3-4): 118-23, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26202346

RESUMEN

OBJECTIVE: This study was conducted to investigate the effects of orally administered apigenin on the pharmacokinetics of venlafaxine (VEN) in rats and on the metabolism of VEN in human and rat liver microsomes in vitro. METHODS: Ten healthy male SD rats were randomly divided into 2 groups: A group (control group), B group (a single dose of 250 mg/kg apigenin). A single dose of 20 mg/kg VEN was administered orally 30 min after administration of apigenin (250 mg/kg). VEN plasma levels were measured by HPLC with fluorescence detection, and pharmacokinetic parameters were calculated by DAS 3.0 software. RESULTS: The single dose of 250 mg/kg apigenin significantly increased the AUC0-t of VEN by 40.9% (p < 0.05) and obviously increased the peak plasma concentration (Cmax) of VEN (p < 0.05). Furthermore, apigenin showed inhibitory effect on human and rat microsomes and the IC50 of apigenin was 58.37 and 25.73 µmol/l, respectively. CONCLUSIONS: Our results indicated that an intake of apigenin could increase VEN plasma levels and some of its pharmacokinetic parameters (AUC, Tmax). Thus, more attention should be paid when VEN was administrated combined with apigenin.


Asunto(s)
Antidepresivos de Segunda Generación/farmacocinética , Apigenina/farmacología , Clorhidrato de Venlafaxina/farmacocinética , Animales , Área Bajo la Curva , Interacciones Farmacológicas , Semivida , Humanos , Técnicas In Vitro , Masculino , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Ratas , Ratas Sprague-Dawley , Clorhidrato de Venlafaxina/antagonistas & inhibidores
11.
Artículo en Inglés | MEDLINE | ID: mdl-26094207

RESUMEN

In this work, a simple, sensitive and fast ultra performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the quantitative determination of vortioxetine in rat plasma. Plasma samples were processed with a protein precipitation. The separation was achieved by an Acquity UPLC BEH C18 column (2.1mm×50mm, 1.7µm) column with a gradient mobile phase consisting of 0.1% formic acid in water and acetonitrile. Detection was carried out using positive-ion electrospray tandem mass spectrometry via multiple reaction monitoring (MRM). The validated method had an excellent linearity in the range of 0.05-20ng/mL (R(2)>0.997) with a lower limit of quantification (0.05ng/mL). The extraction recovery was in the range of 78.3-88.4% for vortioxetine and 80.3% for carbamazepine (internal standard, IS). The intra- and inter-day precision was below 8.5% and accuracy was from -11.2% to 9.5%. No notable matrix effect and astaticism was observed for vortioxetine. The method has been successfully applied to a pharmacokinetic study of vortioxetine in rats for the first time, which provides the basis for the further development and application of vortioxetine.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Piperazinas/sangre , Piperazinas/farmacocinética , Sulfuros/sangre , Sulfuros/farmacocinética , Espectrometría de Masas en Tándem/métodos , Animales , Modelos Lineales , Masculino , Piperazinas/química , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Sulfuros/química , Vortioxetina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...