Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Rhinol Allergy ; : 19458924241252456, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715340

RESUMEN

BACKGROUND: It is reported that CD123 + HLA-DR- cells in PBMC are basophils, and CD203c, CD63, and FcεRI molecules are activation markers of basophils. However, little is known of CD123 + HLA-DR-cells in blood granulocytes. OBJECTIVE: To investigate the presence of CD123 + HLA-DR- cells in the blood granulocytes and peripheral PBMC of patients with allergic rhinitis (AR), as well as the impact of allergens on the cell membrane markers of basophils. METHODS: Flow cytometry was used to detect the expression of the membrane molecules. RESULTS: While CD123 + HLA-DR- PBMCs are representative of basophils, their presence did not significantly change in patients with AR. In contrast, both the percentage and number of CD123 + HLA-DR- granulocytes, which make up only up to 50% of basophils, were significantly increased in patients with seasonal (sAR) and perennial AR (pAR). CD63+, CD203c+, and FcεRIα+ cells within CD123 + HLA-DR- granulocytes also showed enhanced activity in patients with AR. Allergen extracts from house dust mite allergen extract (HDME) and Artemisia sieversiana wild extract further increased the number of CD123 + HLA-DR- cells in granulocytes of sAR and pAR patients, as well as in PBMCs of pAR patients. CONCLUSIONS: The use of CD123 + HLA-DR- granulocytes and PBMC may not be sufficient for diagnosing AR. Allergens could potentially contribute to the development of AR by influencing the number of CD123 + HLA-DR- cells, as well as the expression of CD63, CD203c, and FcεRIαin these cells.

2.
Clin Exp Immunol ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587448

RESUMEN

Allergic asthma (AA) is closely associated with the polarization of T helper (Th)2 and Th17 cells. Interleukin (IL)-18 acts as an inducer of Th2 and Th17 cell responses. However, expressions of IL-18 and IL-18 receptor alpha (IL-18Rα) in blood Th2 and Th17 cells of patients with AA remain unclear. We therefore investigated their expressions in Th2 and Th17 cells using flow cytometric analysis, qPCR and murine AA model. We observed increased proportions of Th2, Th17, IL-18+, IL-18+ Th2 and IL-18+ Th17 cells in blood CD4+ T cells of patients with AA. Additionally, house dust mite seemed to upregulate further IL-18 expression in Th2 and Th17, and upregulate IL-18Rα expression in CD4+ T, Th2 and Th17 cells of AA patients. It was also found that the plasma levels of IL-4, IL-17A and IL-18 in AA patients were elevated, and they were correlated between each other. In OVA-induced asthma mouse (AM), we observed that the percentages of blood CD4+ T, Th2 and Th17 cells were increased. Moreover, OVA-induced AM expressed higher level of IL-18Rα in blood Th2 cells, which was downregulated by IL-18. Increased IL-18Rα expression was also observed in blood Th2 cells of OVA-induced FcεRIα-/-mice. Collectively, our findings suggest the involvement of Th2 cells in AA by expressing excessive IL-18 and IL-18Rα in response to allergen, and that IL-18 and IL-18Rα expressing Th2 cells are likely to be the potential targets for AA therapy.

3.
Front Mol Biosci ; 9: 907092, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36032674

RESUMEN

Background : Altered basophil identification markers have been discovered to associate with allergic asthma (AA) in recent years. However, little is known about the expression of basophil markers in blood granulocytes. Aim: To parallel test blood basophils in peripheral blood mononuclear cell (PBMC) and granulocyte populations of patients with AA and AA combined with allergic rhinitis (ARA) Methods: The expressions of surface molecules were determined via flow cytometry. CD123 expressing cells in blood were isolated using a cell sorting technique, and mouse AA models were employed for in vivo study. Results: The numbers of CD123+HLA-DR- cells in the granulocytes of AA and ARA patients markedly increased. However, only 49.7% of CD123+HLA-DR- cells in granulocytes and 99.0% of CD123+HLA-DR- cells in PBMCs were basophils. Almost all CD123+HLA-DR- cells expressed CD63 regardless in granulocytes or PBMC. The numbers of CD63, Fc epsilon receptor I (FcεRI), and CD203c expressing cells markedly enhanced in CD123+HLA-DR- granulocytes of AA and ARA patients. Mean fluorescence intensity (MFI) of CD63 and CD203c expressions on CD123+HLA-DR- PBMC and granulocytes of AA and ARA patients dramatically elevated. House dust mite extract (HDME) and Artemisia sieversiana wild allergen extract (ASWE) enhanced the numbers of CD63+CD123+HLA-DR- granulocytes and PBMC and the MFI of CD203c expression on CD123+HLA-DR- granulocyte of AA and ARA patients. Histamine, tryptase, and PGD2 enhanced proportions of CD123+ KU812 cells. ASWE- and HDME-induced AA mice showed upregulated CD63 expression on basophils. In conclusion, upregulated expressions of CD123, CD203c, CD63, and FcεRIα in PBMC and granulocytes of patients with AA and ARA suggest that CD123+HLA-DR- cells may contribute to the development of AA and ARA.

4.
J Healthc Eng ; 2021: 9989602, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34326980

RESUMEN

Stroke is a major disease that seriously endangers the lives and health of middle-aged and elderly people in our country, but its implementation of secondary prevention needs to be improved urgently. The application of IoT technology in home health monitoring and telemedicine, as well as the popularization of cloud computing, contributes to the early identification of ischemic stroke and provides intelligent, humanized, and preventive medical and health services for patients at high risk of stroke. This article clarifies the networking structure and networking objects of the rehabilitation system Internet of Things, clarifies the functions of each part, and establishes an overall system architecture based on smart medical care; the design and optimization of the mechanical part of the stroke rehabilitation robot are carried out, as well as kinematics and dynamic analysis. According to the functions of different types of stroke rehabilitation robots, strategies are given for the use of lower limb rehabilitation robots; standardized codes are used to identify system objects, and RFID technology is used to automatically identify users and devices. Combined with the use of the Internet and GSM mobile communication network, construct a network database of system networking objects and, on this basis, establish information management software based on a smart medical rehabilitation system that takes care of both doctors and patients to realize the system's Internet of Things architecture. In addition, this article also gives the recovery strategy generation in the system with the design method of resource scheduling method and the theoretical algorithm of rehabilitation strategy generation is given and verified. This research summarizes the application background, advantages, and past practice of the Internet of Things in stroke medical care, develops and applies a medical collaborative cloud computing system for systematic intervention of stroke, and realizes the module functions such as information sharing, regional monitoring, and collaborative consultation within the base.


Asunto(s)
Internet de las Cosas , Accidente Cerebrovascular , Telemedicina , Anciano , Nube Computacional , Humanos , Internet , Persona de Mediana Edad , Tecnología de Sensores Remotos , Accidente Cerebrovascular/prevención & control , Telemedicina/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...